Skip to main content
Top
Published in: BMC Oral Health 1/2019

Open Access 01-12-2019 | Guided Tissue Regeneration | Research article

In-vitro antibiofilm activity of chlorhexidine digluconate on polylactide-based and collagen-based membranes

Authors: Jan-Luca Rudolf, Corina Moser, Anton Sculean, Sigrun Eick

Published in: BMC Oral Health | Issue 1/2019

Login to get access

Abstract

Background

In Guided Tissue Regeneration (GTR), barrier membranes are used to allow selective cell populations to multiply and to promote periodontal regeneration. A frequent complication is membrane exposure to the oral cavity followed by bacterial colonization. The purpose of this in-vitro-study was to elucidate, if rinsing with a chlorhexidine digluconate solution (CHX) prevents bacterial adhesion, and whether it interferes with attachment of periodontal ligament (PDL) fibroblasts and epithelial cells to membrane surfaces.

Methods

Firstly, two bioresorbable membranes (polylactide-based and collagen-based) were dipped into 0.06% CHX and 0.12% CHX, before biofilms (2-species representing periodontal health, 6-species representing a periodontitis) were formed for 2 h and 8 h. Subsequently, colony forming units (cfu) were counted. Secondly, the membranes were treated with CHX and inoculated in bacteria suspension two-time per day for 3 d before cfu were determined. In additional series, the influence of CHX and bacterial lysates on attachment of epithelial cells and PDL fibroblasts was determined. Parameter-free tests were applied for statistical analysis.

Results

Cfu in “healthy” biofilms did not differ between the two membranes, more cfu were counted in “periodontitis” biofilm on collagen than on polylactide membranes. One-time dipping of membranes into CHX solutions did not markedly influence the cfu counts of both biofilms on polylactide membrane; those on collagen-based membrane were significantly reduced with being 0.12% CHX more active than 0.06% CHX. More-fold CHX dipping of membranes reduced concentration-dependent the cfu counts of both biofilms on both membranes. In general, the number of attached gingival epithelial cells and PDL fibroblasts was higher on collagen than on polylactide membrane. Lysates of the periodontopathogenic bacteria inhibited attachment of PDL fibroblasts to membranes. CHX decreased in a concentration-dependend manner the number of attached gingival epithelial cells and PDL fibroblasts.

Conclusions

The present in-vitro results appear to indicate that membranes in GTR should only be used when bacteria being associated with periodontal disease have been eliminated. An exposure of the membrane should be avoided. Rinsing with CHX may prevent or at least retard bacterial colonization on membrane exposed to the oral activity. However, a certain negative effect on wound healing cannot be excluded.
Literature
1.
go back to reference Bottino MC, Thomas V. Membranes for periodontal regeneration--a materials perspective. Front Oral Biol. 2015;17:90–100.CrossRef Bottino MC, Thomas V. Membranes for periodontal regeneration--a materials perspective. Front Oral Biol. 2015;17:90–100.CrossRef
2.
go back to reference Vignoletti F, Nunez J, Sanz M. Soft tissue wound healing at teeth, dental implants and the edentulous ridge when using barrier membranes, growth and differentiation factors and soft tissue substitutes. J Clin Periodontol. 2014;41(Suppl 15):S23–35.CrossRef Vignoletti F, Nunez J, Sanz M. Soft tissue wound healing at teeth, dental implants and the edentulous ridge when using barrier membranes, growth and differentiation factors and soft tissue substitutes. J Clin Periodontol. 2014;41(Suppl 15):S23–35.CrossRef
3.
go back to reference Stoecklin-Wasmer C, Rutjes AW, da Costa BR, Salvi GE, Juni P, Sculean A. Absorbable collagen membranes for periodontal regeneration: a systematic review. J Dent Res. 2013;92:773–81.CrossRef Stoecklin-Wasmer C, Rutjes AW, da Costa BR, Salvi GE, Juni P, Sculean A. Absorbable collagen membranes for periodontal regeneration: a systematic review. J Dent Res. 2013;92:773–81.CrossRef
4.
go back to reference Cortellini P, Tonetti MS. Focus on intrabony defects: guided tissue regeneration. Periodontol 2000. 2000;22:104–32.CrossRef Cortellini P, Tonetti MS. Focus on intrabony defects: guided tissue regeneration. Periodontol 2000. 2000;22:104–32.CrossRef
6.
go back to reference Cortellini P, Tonetti MS. Clinical performance of a regenerative strategy for intrabony defects: scientific evidence and clinical experience. J Periodontol. 2005;76:341–50.CrossRef Cortellini P, Tonetti MS. Clinical performance of a regenerative strategy for intrabony defects: scientific evidence and clinical experience. J Periodontol. 2005;76:341–50.CrossRef
7.
go back to reference Chen YT, Wang HL, Lopatin DE, O'Neal R, MacNeil RL. Bacterial adherence to guided tissue regeneration barrier membranes exposed to the oral environment. J Periodontol. 1997;68:172–9.CrossRef Chen YT, Wang HL, Lopatin DE, O'Neal R, MacNeil RL. Bacterial adherence to guided tissue regeneration barrier membranes exposed to the oral environment. J Periodontol. 1997;68:172–9.CrossRef
8.
go back to reference Ling LJ, Hung SL, Lee CF, Chen YT, Wu KM. The influence of membrane exposure on the outcomes of guided tissue regeneration: clinical and microbiological aspects. J Periodontal Res. 2003;38:57–63.CrossRef Ling LJ, Hung SL, Lee CF, Chen YT, Wu KM. The influence of membrane exposure on the outcomes of guided tissue regeneration: clinical and microbiological aspects. J Periodontal Res. 2003;38:57–63.CrossRef
9.
go back to reference Nowzari H, MacDonald ES, Flynn J, London RM, Morrison JL, Slots J. The dynamics of microbial colonization of barrier membranes for guided tissue regeneration. J Periodontol. 1996;67:694–702.CrossRef Nowzari H, MacDonald ES, Flynn J, London RM, Morrison JL, Slots J. The dynamics of microbial colonization of barrier membranes for guided tissue regeneration. J Periodontol. 1996;67:694–702.CrossRef
10.
go back to reference Chen YT, Hung SL, Lin LW, Chi LY, Ling LJ. Attachment of periodontal ligament cells to chlorhexidine-loaded guided tissue regeneration membranes. J Periodontol. 2003;74:1652–9.CrossRef Chen YT, Hung SL, Lin LW, Chi LY, Ling LJ. Attachment of periodontal ligament cells to chlorhexidine-loaded guided tissue regeneration membranes. J Periodontol. 2003;74:1652–9.CrossRef
11.
go back to reference Sela MN, Steinberg D, Klinger A, Krausz AA, Kohavi D. Adherence of periodontopathic bacteria to bioabsorbable and non-absorbable barrier membranes in vitro. Clin Oral Implants Res. 1999;10:445–52.CrossRef Sela MN, Steinberg D, Klinger A, Krausz AA, Kohavi D. Adherence of periodontopathic bacteria to bioabsorbable and non-absorbable barrier membranes in vitro. Clin Oral Implants Res. 1999;10:445–52.CrossRef
12.
go back to reference Reddy MS, Jeffcoat MK, Geurs NC, Palcanis KG, Weatherford TW, Traxler BM, Finkelman RD. Efficacy of controlled-release subgingival chlorhexidine to enhance periodontal regeneration. J Periodontol. 2003;74:411–9.CrossRef Reddy MS, Jeffcoat MK, Geurs NC, Palcanis KG, Weatherford TW, Traxler BM, Finkelman RD. Efficacy of controlled-release subgingival chlorhexidine to enhance periodontal regeneration. J Periodontol. 2003;74:411–9.CrossRef
13.
go back to reference Zucchelli G, Pollini F, Clauser C, De Sanctis M. The effect of chlorhexidine mouthrinses on early bacterial colonization of guided tissue regeneration membranes. An in vivo study. J Periodontol. 2000;71:263–71.CrossRef Zucchelli G, Pollini F, Clauser C, De Sanctis M. The effect of chlorhexidine mouthrinses on early bacterial colonization of guided tissue regeneration membranes. An in vivo study. J Periodontol. 2000;71:263–71.CrossRef
14.
go back to reference Simion M, Trisi P, Maglione M, Piattelli A. Bacterial penetration in vitro through GTAM membrane with and without topical chlorhexidine application. A light and scanning electron microscopic study. J Clin Periodontol. 1995;22:321–31.CrossRef Simion M, Trisi P, Maglione M, Piattelli A. Bacterial penetration in vitro through GTAM membrane with and without topical chlorhexidine application. A light and scanning electron microscopic study. J Clin Periodontol. 1995;22:321–31.CrossRef
15.
go back to reference Moffatt-Jauregui CE, Robinson B, de Moya AV, Brockman RD, Roman AV, Cash MN, Culp DJ, Lamont RJ. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line. J Periodontal Res. 2013;48:713–21.PubMed Moffatt-Jauregui CE, Robinson B, de Moya AV, Brockman RD, Roman AV, Cash MN, Culp DJ, Lamont RJ. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line. J Periodontal Res. 2013;48:713–21.PubMed
16.
go back to reference Eick S, Straube A, Guentsch A, Pfister W, Jentsch H. Comparison of real-time polymerase chain reaction and DNA-strip technology in microbiological evaluation of periodontitis treatment. Diagn Microbiol Infect Dis. 2011;69:12–20.CrossRef Eick S, Straube A, Guentsch A, Pfister W, Jentsch H. Comparison of real-time polymerase chain reaction and DNA-strip technology in microbiological evaluation of periodontitis treatment. Diagn Microbiol Infect Dis. 2011;69:12–20.CrossRef
17.
go back to reference Shen Y, Li Y, Ye F, Wang F, Lu W, Xie X. Identification of suitable reference genes for measurement of gene expression in human cervical tissues. Anal Biochem. 2010;405:224–9.CrossRef Shen Y, Li Y, Ye F, Wang F, Lu W, Xie X. Identification of suitable reference genes for measurement of gene expression in human cervical tissues. Anal Biochem. 2010;405:224–9.CrossRef
18.
go back to reference Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, Janowski GM. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Dent Mater. 2012;28:703–21.CrossRef Bottino MC, Thomas V, Schmidt G, Vohra YK, Chu TM, Kowolik MJ, Janowski GM. Recent advances in the development of GTR/GBR membranes for periodontal regeneration--a materials perspective. Dent Mater. 2012;28:703–21.CrossRef
19.
go back to reference Cheng CF, Wu KM, Chen YT, Hung SL. Bacterial adhesion to antibiotic-loaded guided tissue regeneration membranes - a scanning electron microscopy study. J Formos Med Assoc. 2015;114:35–45.CrossRef Cheng CF, Wu KM, Chen YT, Hung SL. Bacterial adhesion to antibiotic-loaded guided tissue regeneration membranes - a scanning electron microscopy study. J Formos Med Assoc. 2015;114:35–45.CrossRef
20.
go back to reference Behring J, Junker R, Walboomers XF, Chessnut B, Jansen JA. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008;96:1–11.CrossRef Behring J, Junker R, Walboomers XF, Chessnut B, Jansen JA. Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. A systematic review. Odontology. 2008;96:1–11.CrossRef
21.
go back to reference Hung SL, Lin YW, Wang YH, Chen YT, Su CY, Ling LJ. Permeability of Streptococcus mutans and Actinobacillus actinomycetemcomitans through guided tissue regeneration membranes and their effects on attachment of periodontal ligament cells. J Periodontol. 2002;73:843–51.CrossRef Hung SL, Lin YW, Wang YH, Chen YT, Su CY, Ling LJ. Permeability of Streptococcus mutans and Actinobacillus actinomycetemcomitans through guided tissue regeneration membranes and their effects on attachment of periodontal ligament cells. J Periodontol. 2002;73:843–51.CrossRef
22.
go back to reference Bedi GS, Williams T. Purification and characterization of a collagen-degrading protease from Porphyromonas gingivalis. J Biol Chem. 1994;269:599–606.PubMed Bedi GS, Williams T. Purification and characterization of a collagen-degrading protease from Porphyromonas gingivalis. J Biol Chem. 1994;269:599–606.PubMed
23.
go back to reference Kawase N, Kishi J, Nakamura H, Hayakawa T. Collagenolytic activity in sonic extracts of Tannerella forsythia. Arch Oral Biol. 2010;55:545–9.CrossRef Kawase N, Kishi J, Nakamura H, Hayakawa T. Collagenolytic activity in sonic extracts of Tannerella forsythia. Arch Oral Biol. 2010;55:545–9.CrossRef
24.
go back to reference Sela MN, Babitski E, Steinberg D, Kohavi D, Rosen G. Degradation of collagen-guided tissue regeneration membranes by proteolytic enzymes of Porphyromonas gingivalis and its inhibition by antibacterial agents. Clin Oral Implants Res. 2009;20:496–502.CrossRef Sela MN, Babitski E, Steinberg D, Kohavi D, Rosen G. Degradation of collagen-guided tissue regeneration membranes by proteolytic enzymes of Porphyromonas gingivalis and its inhibition by antibacterial agents. Clin Oral Implants Res. 2009;20:496–502.CrossRef
25.
go back to reference Ruggiero S, Cosgarea R, Potempa J, Potempa B, Eick S, Chiquet M. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C. Biochim Biophys Acta. 2013;1832:517–26.CrossRef Ruggiero S, Cosgarea R, Potempa J, Potempa B, Eick S, Chiquet M. Cleavage of extracellular matrix in periodontitis: gingipains differentially affect cell adhesion activities of fibronectin and tenascin-C. Biochim Biophys Acta. 2013;1832:517–26.CrossRef
27.
go back to reference Sculean A, Donos N, Blaes A, Lauermann M, Reich E, Brecx M. Comparison of enamel matrix proteins and bioabsorbable membranes in the treatment of intrabony periodontal defects. A split-mouth study. J Periodontol. 1999;70:255–62.CrossRef Sculean A, Donos N, Blaes A, Lauermann M, Reich E, Brecx M. Comparison of enamel matrix proteins and bioabsorbable membranes in the treatment of intrabony periodontal defects. A split-mouth study. J Periodontol. 1999;70:255–62.CrossRef
28.
go back to reference Murphy KG. Postoperative healing complications associated with Gore-Tex periodontal material. Part I. incidence and characterization. Int J Periodontics Restorative Dent. 1995;15:363–75.PubMed Murphy KG. Postoperative healing complications associated with Gore-Tex periodontal material. Part I. incidence and characterization. Int J Periodontics Restorative Dent. 1995;15:363–75.PubMed
29.
go back to reference Xue J, Shi R, Niu Y, Gong M, Coates P, Crawford A, Chen D, Tian W, Zhang L. Fabrication of drug-loaded anti-infective guided tissue regeneration membrane with adjustable biodegradation property. Colloids Surf B Biointerfaces. 2015;135:846–54.CrossRef Xue J, Shi R, Niu Y, Gong M, Coates P, Crawford A, Chen D, Tian W, Zhang L. Fabrication of drug-loaded anti-infective guided tissue regeneration membrane with adjustable biodegradation property. Colloids Surf B Biointerfaces. 2015;135:846–54.CrossRef
30.
go back to reference Rani S, Chandra RV, Reddy AA, Reddy BH, Nagarajan S, Naveen A. Evaluation of the antibacterial effect of silver nanoparticles on guided tissue regeneration membrane colonization--an in vitro study. J Int Acad Periodontol. 2015;17:66–76.PubMed Rani S, Chandra RV, Reddy AA, Reddy BH, Nagarajan S, Naveen A. Evaluation of the antibacterial effect of silver nanoparticles on guided tissue regeneration membrane colonization--an in vitro study. J Int Acad Periodontol. 2015;17:66–76.PubMed
31.
go back to reference Dowell P, al-Arrayed F, Adam S, Moran J. A comparative clinical study: the use of human type I collagen with and without the addition of metronidazole in the GTR method of treatment of periodontal disease. J Clin Periodontol. 1995;22:543–9.CrossRef Dowell P, al-Arrayed F, Adam S, Moran J. A comparative clinical study: the use of human type I collagen with and without the addition of metronidazole in the GTR method of treatment of periodontal disease. J Clin Periodontol. 1995;22:543–9.CrossRef
32.
go back to reference Chaturvedi R, Gill AS, Sikri P. Evaluation of the regenerative potential of 25% doxycycline-loaded biodegradable membrane vs biodegradable membrane alone in the treatment of human periodontal infrabony defects: a clinical and radiological study. Indian J Dent Res. 2008;19:116–23.CrossRef Chaturvedi R, Gill AS, Sikri P. Evaluation of the regenerative potential of 25% doxycycline-loaded biodegradable membrane vs biodegradable membrane alone in the treatment of human periodontal infrabony defects: a clinical and radiological study. Indian J Dent Res. 2008;19:116–23.CrossRef
33.
go back to reference Minabe M, Kodama T, Kogou T, Fushimi H, Sugiyama T, Takeuchi K, Miterai E, Nishikubo S. Clinical significance of antibiotic therapy in guided tissue regeneration with a resorbable membrane. Periodontal Clin Investig. 2001;23:20–30.PubMed Minabe M, Kodama T, Kogou T, Fushimi H, Sugiyama T, Takeuchi K, Miterai E, Nishikubo S. Clinical significance of antibiotic therapy in guided tissue regeneration with a resorbable membrane. Periodontal Clin Investig. 2001;23:20–30.PubMed
34.
go back to reference Eick S, Goltz S, Nietzsche S, Jentsch H, Pfister W. Efficacy of chlorhexidine digluconate-containing formulations and other mouthrinses against periodontopathogenic microorganisms. Quintessence Int. 2011;42:687–700.PubMed Eick S, Goltz S, Nietzsche S, Jentsch H, Pfister W. Efficacy of chlorhexidine digluconate-containing formulations and other mouthrinses against periodontopathogenic microorganisms. Quintessence Int. 2011;42:687–700.PubMed
35.
go back to reference Koontongkaew S, Jitpukdeebodintra S. Interaction of chlorhexidine with cytoplasmic membranes of Streptococcus mutans GS-5. Caries Res. 1995;29:413–7.CrossRef Koontongkaew S, Jitpukdeebodintra S. Interaction of chlorhexidine with cytoplasmic membranes of Streptococcus mutans GS-5. Caries Res. 1995;29:413–7.CrossRef
36.
go back to reference Nishioka H, Nagahama A, Inoue Y, Hagi A. Evaluation of fast-acting bactericidal activity and substantivity of an antiseptic agent, olanexidine gluconate, using an ex vivo skin model. J Med Microbiol. 2018;67:1796–803.CrossRef Nishioka H, Nagahama A, Inoue Y, Hagi A. Evaluation of fast-acting bactericidal activity and substantivity of an antiseptic agent, olanexidine gluconate, using an ex vivo skin model. J Med Microbiol. 2018;67:1796–803.CrossRef
37.
go back to reference Sharma P, Mickel AK, Chogle S, Sharma PN, Han YW, Jones JJ. An evaluation of bacterial contamination of barriers used in periapical tissue regeneration: part 1--bacterial adherence. Quintessence Int. 2008;39:159–63.PubMed Sharma P, Mickel AK, Chogle S, Sharma PN, Han YW, Jones JJ. An evaluation of bacterial contamination of barriers used in periapical tissue regeneration: part 1--bacterial adherence. Quintessence Int. 2008;39:159–63.PubMed
38.
go back to reference Liu JX, Werner J, Kirsch T, Zuckerman JD, Virk MS. Cytotoxicity evaluation of chlorhexidine gluconate on human fibroblasts, myoblasts, and osteoblasts. J Bone Jt Infect. 2018;3:165–72.CrossRef Liu JX, Werner J, Kirsch T, Zuckerman JD, Virk MS. Cytotoxicity evaluation of chlorhexidine gluconate on human fibroblasts, myoblasts, and osteoblasts. J Bone Jt Infect. 2018;3:165–72.CrossRef
Metadata
Title
In-vitro antibiofilm activity of chlorhexidine digluconate on polylactide-based and collagen-based membranes
Authors
Jan-Luca Rudolf
Corina Moser
Anton Sculean
Sigrun Eick
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2019
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-019-0979-y

Other articles of this Issue 1/2019

BMC Oral Health 1/2019 Go to the issue