Skip to main content
Top
Published in: BMC Oral Health 1/2015

Open Access 01-12-2015 | Research article

The activation of pyrin domain-containing-3 inflammasome depends on lipopolysaccharide from Porphyromonas gingivalis and extracellular adenosine triphosphate in cultured oral epithelial cells

Authors: Wei Guo, Peng Wang, Zhonghao Liu, Pishan Yang, Ping Ye

Published in: BMC Oral Health | Issue 1/2015

Login to get access

Abstract

Background

Gingival epithelial cells are the major population of the gingival tissue, acting as the front-line defense against microbial intrusion and regulating the homeostasis of the periodontal tissue in health and disease via NLR family pyrin domain-containing-3 (NLRP3) inflammasome, which recognizes pathogen- and danger-associated molecular patterns (PAMPs and DAMPs). The aim of this study was to determine whether the activation of NLRP3 inflammasome depends on infection with the periodontal pathogen Porphyromonas gingivalis (P. gingivalis), or stimulation with P. gingivalis lipopolysaccharide (LPS), and/or extracellular adenosine triphosphate (ATP).

Methods

An oral epithelial cell line was treated with P. gingivalis, P. gingivalis LPS and ATP. The gene and protein expression of NLRP3 inflammasome components were quantified by real time RT-PCR and immunoblots. Production of IL-1β and IL-18 was measured by ELISA.

Results

There was no increase in NLRP3 inflammasome gene expression after P. gingivalis infection unless pre-stimulated by ATP. Obvious increases of NLRP3 inflammasome gene expression was observed after P. gingivalis LPS stimulation, even pre-stimulated by ATP at 2 h.

Conclusions

The findings indicate that the activation of NLRP3 inflammasome does not rely on P. gingivalis infection, unless stimulated by P. gingivalis LPS and/or extracellular ATP, suggesting diverse signaling pathways are involved in the host immune response.
Literature
1.
go back to reference Seymour GJ, Ford PJ, Cullinan MP, Leishman S, Yamazaki K. Relationship between periodontal infections and systemic disease. Clin Microbiol Infect. 2007;4:3–10.CrossRef Seymour GJ, Ford PJ, Cullinan MP, Leishman S, Yamazaki K. Relationship between periodontal infections and systemic disease. Clin Microbiol Infect. 2007;4:3–10.CrossRef
2.
go back to reference Lindhe J, Ranney R, Lamster I. Consensus report: Chronic periodontitis. Annuals Periodontol. 1999;4:1.CrossRef Lindhe J, Ranney R, Lamster I. Consensus report: Chronic periodontitis. Annuals Periodontol. 1999;4:1.CrossRef
4.
go back to reference Guo W, Ye P, Yu H, Liu ZH, Yang PS, Hunter N. CD24 activates the NLRP3 inflammasome through c-Src kinase activity in a model of the lining epithelium of inflamed periodontal tissues. Immun Inflamm Dis. 2014;2:239–53.PubMedCentralCrossRefPubMed Guo W, Ye P, Yu H, Liu ZH, Yang PS, Hunter N. CD24 activates the NLRP3 inflammasome through c-Src kinase activity in a model of the lining epithelium of inflamed periodontal tissues. Immun Inflamm Dis. 2014;2:239–53.PubMedCentralCrossRefPubMed
5.
go back to reference Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.CrossRefPubMed Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol. 2009;27:519–50.CrossRefPubMed
6.
go back to reference Palma G, Barbieri A, Bimonte S, Palla M, Zappavigna S, Caraglia M, et al. Interleukin 18: friend or foe in cancer. Biochim Biophys Acta. 1836;2013:296–303. Palma G, Barbieri A, Bimonte S, Palla M, Zappavigna S, Caraglia M, et al. Interleukin 18: friend or foe in cancer. Biochim Biophys Acta. 1836;2013:296–303.
7.
go back to reference Bostanci N, Emingil G, Saygan B, Turkoglu O, Atilla G, Curtis MA, et al. Expression and regulation of the NALP3 inflammasome complex in periodontal diseases. Clin Exp Immunol. 2009;157:415–22.PubMedCentralCrossRefPubMed Bostanci N, Emingil G, Saygan B, Turkoglu O, Atilla G, Curtis MA, et al. Expression and regulation of the NALP3 inflammasome complex in periodontal diseases. Clin Exp Immunol. 2009;157:415–22.PubMedCentralCrossRefPubMed
8.
go back to reference Bostanci N, Meier A, Guggenheim B, Belibasakis GN. Regulation of NLRP3 and AIM2 inflammasome gene expression levels in gingival fibroblasts by oral biofilms. Cell Immunol. 2011;270:88–93.CrossRefPubMed Bostanci N, Meier A, Guggenheim B, Belibasakis GN. Regulation of NLRP3 and AIM2 inflammasome gene expression levels in gingival fibroblasts by oral biofilms. Cell Immunol. 2011;270:88–93.CrossRefPubMed
9.
go back to reference Bryan NB, Dorfleutner A, Kramer SJ, Yun C, Rojanasakul Y, Stehlik C. Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes. J Inflamm. 2010;18:7–23. Bryan NB, Dorfleutner A, Kramer SJ, Yun C, Rojanasakul Y, Stehlik C. Differential splicing of the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) regulates inflammasomes. J Inflamm. 2010;18:7–23.
10.
go back to reference Hamedi M, Belibasakis GN, Cruchley AT, Rangarajan M, Curtis MA, Bostanci N. Porphyromonas gingivalis culture supernatants differentially regulate interleukin-1beta and interleukin-18 in human monocytic cells. Cytokine. 2009;45:99–104.CrossRefPubMed Hamedi M, Belibasakis GN, Cruchley AT, Rangarajan M, Curtis MA, Bostanci N. Porphyromonas gingivalis culture supernatants differentially regulate interleukin-1beta and interleukin-18 in human monocytic cells. Cytokine. 2009;45:99–104.CrossRefPubMed
11.
go back to reference Tribble GD, Kerr JE, Wang BY. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences. Future Microbiol. 2013;8:607–20.CrossRefPubMed Tribble GD, Kerr JE, Wang BY. Genetic diversity in the oral pathogen Porphyromonas gingivalis: molecular mechanisms and biological consequences. Future Microbiol. 2013;8:607–20.CrossRefPubMed
12.
go back to reference Andrian E, Grenier D, Rouabhia M. Porphyromonas gingivalis-epithelial cell interactions in periodontitis. J Dent Res. 2006;85:392–403.CrossRefPubMed Andrian E, Grenier D, Rouabhia M. Porphyromonas gingivalis-epithelial cell interactions in periodontitis. J Dent Res. 2006;85:392–403.CrossRefPubMed
13.
go back to reference Southerland JH, Taylor GW, Moss K, Beck JD, Offenbacher S. Commonality in chronic inflammatory diseases: periodontitis, diabetes, and coronary artery disease. Periodontol. 2000;40:130–43.CrossRef Southerland JH, Taylor GW, Moss K, Beck JD, Offenbacher S. Commonality in chronic inflammatory diseases: periodontitis, diabetes, and coronary artery disease. Periodontol. 2000;40:130–43.CrossRef
14.
go back to reference Delima AJ, Karatzas S, Amar S, Graves DT. Inflammation and tissue loss caused by periodontal pathogens is reduced by interleukin-1 antagonists. J Infect Dis. 2002;186:511–6.CrossRefPubMed Delima AJ, Karatzas S, Amar S, Graves DT. Inflammation and tissue loss caused by periodontal pathogens is reduced by interleukin-1 antagonists. J Infect Dis. 2002;186:511–6.CrossRefPubMed
15.
go back to reference Hsu HY, Wen MH. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem. 2002;277:22131–9.CrossRefPubMed Hsu HY, Wen MH. Lipopolysaccharide-mediated reactive oxygen species and signal transduction in the regulation of interleukin-1 gene expression. J Biol Chem. 2002;277:22131–9.CrossRefPubMed
16.
go back to reference Garner AD, Tucci MA, Benghuzzi HA. The effectiveness of potent dental adhesives on the viability of LPS challenged human gingival fibroblasts. Biomed Sci Instrum. 2014;50:41–6.PubMed Garner AD, Tucci MA, Benghuzzi HA. The effectiveness of potent dental adhesives on the viability of LPS challenged human gingival fibroblasts. Biomed Sci Instrum. 2014;50:41–6.PubMed
17.
go back to reference Liu Y, Yao W, Xu J, Qiu Y, Cao F, Li S, et al. The anti-inflammatory effects of acetaminophen and N-acetylcysteine through suppression of the NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Innate Immun. 2015;8:1–11. Liu Y, Yao W, Xu J, Qiu Y, Cao F, Li S, et al. The anti-inflammatory effects of acetaminophen and N-acetylcysteine through suppression of the NLRP3 inflammasome pathway in LPS-challenged piglet mononuclear phagocytes. Innate Immun. 2015;8:1–11.
18.
go back to reference Varga A, Budai MM, Milesz S, Bácsi A, Tzsér J, Benk S. Ragweed pollen extract intensifies lipopolysaccharide-induced priming of NLRP3 inflammasome in human macrophages. Immunology. 2013;138:392–401.PubMedCentralCrossRefPubMed Varga A, Budai MM, Milesz S, Bácsi A, Tzsér J, Benk S. Ragweed pollen extract intensifies lipopolysaccharide-induced priming of NLRP3 inflammasome in human macrophages. Immunology. 2013;138:392–401.PubMedCentralCrossRefPubMed
19.
go back to reference Li H, Zhou X, Zhang J. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced inflammasome activation in human gingival epithelial cells. Int J Mol Med. 2014;34:1039–44.PubMed Li H, Zhou X, Zhang J. Induction of heme oxygenase-1 attenuates lipopolysaccharide-induced inflammasome activation in human gingival epithelial cells. Int J Mol Med. 2014;34:1039–44.PubMed
20.
go back to reference Kinane DF, Galicia JC, Gorr SU, Stathopoulou PG, Benakanakere MP. Gingivalis interactions with epithelial cells. Front Biosci. 2008;13:966–84.CrossRefPubMed Kinane DF, Galicia JC, Gorr SU, Stathopoulou PG, Benakanakere MP. Gingivalis interactions with epithelial cells. Front Biosci. 2008;13:966–84.CrossRefPubMed
21.
go back to reference Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, et al. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006;176:3877–83.CrossRefPubMed Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, et al. The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006;176:3877–83.CrossRefPubMed
22.
go back to reference Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci. 2011;68:765–83.CrossRefPubMed Bauernfeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, et al. Inflammasomes: current understanding and open questions. Cell Mol Life Sci. 2011;68:765–83.CrossRefPubMed
23.
go back to reference Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334:1573–7.CrossRefPubMed Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science. 2011;334:1573–7.CrossRefPubMed
24.
go back to reference Sanz JM, Di Virgilio F. Kinetics and mechanism of ATP dependent IL-1 beta release from microglial cells. J Immunol. 2000;164:4893–8.CrossRefPubMed Sanz JM, Di Virgilio F. Kinetics and mechanism of ATP dependent IL-1 beta release from microglial cells. J Immunol. 2000;164:4893–8.CrossRefPubMed
25.
go back to reference Perregaux DG, McNiff P, Laliberte R, Conklyn M, Gabel CA. ATP acts as an agonist to promote stimulus-induced secretion of IL-1 beta and IL-18 in human blood. J Immunol. 2000;65:4615–23.CrossRef Perregaux DG, McNiff P, Laliberte R, Conklyn M, Gabel CA. ATP acts as an agonist to promote stimulus-induced secretion of IL-1 beta and IL-18 in human blood. J Immunol. 2000;65:4615–23.CrossRef
26.
go back to reference Yilmaz O, Sater AA, Yao L, Luyu Yao L, Koutouzis T, Pettengill M, et al. ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis. Cell Microbiol. 2010;12:188–98.PubMedCentralCrossRefPubMed Yilmaz O, Sater AA, Yao L, Luyu Yao L, Koutouzis T, Pettengill M, et al. ATP-dependent activation of an inflammasome in primary gingival epithelial cells infected by Porphyromonas gingivalis. Cell Microbiol. 2010;12:188–98.PubMedCentralCrossRefPubMed
27.
go back to reference Prime SS, Nixon SV, Crane IJ, Stone A, Matthews JB, Maitland NJ, et al. The behaviour of human oral squamous cell carcinoma in cell culture. J Pathol. 1990;160:259–69.CrossRefPubMed Prime SS, Nixon SV, Crane IJ, Stone A, Matthews JB, Maitland NJ, et al. The behaviour of human oral squamous cell carcinoma in cell culture. J Pathol. 1990;160:259–69.CrossRefPubMed
28.
go back to reference Ye P, Nadkarni MA, Hunter N. Regulation of E-cadherin and TGF-beta3 expression by CD24 in cultured oral epithelial cells. Biochem Biophys Res Commun. 2006;349:229–35.CrossRefPubMed Ye P, Nadkarni MA, Hunter N. Regulation of E-cadherin and TGF-beta3 expression by CD24 in cultured oral epithelial cells. Biochem Biophys Res Commun. 2006;349:229–35.CrossRefPubMed
29.
go back to reference Swierenga SH, MacManus JP. Preparation of low calcium growth medium suitable for determination of tumorigenicity of cultured cells. J Tissue Culture Methods. 1982;7:1–3.CrossRef Swierenga SH, MacManus JP. Preparation of low calcium growth medium suitable for determination of tumorigenicity of cultured cells. J Tissue Culture Methods. 1982;7:1–3.CrossRef
30.
go back to reference Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, Weinberg A. Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun. 1995;63:3878–85.PubMedCentralPubMed Lamont RJ, Chan A, Belton CM, Izutsu KT, Vasel D, Weinberg A. Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun. 1995;63:3878–85.PubMedCentralPubMed
31.
go back to reference Huck O, Elkaim R, Davideau JL, Tenenbaum H. Porphyromonas gingivalis-impaired innate immune response via NLRP3 proteolysis in endothelial cells. Innate Immun. 2014;21:65–72.CrossRefPubMed Huck O, Elkaim R, Davideau JL, Tenenbaum H. Porphyromonas gingivalis-impaired innate immune response via NLRP3 proteolysis in endothelial cells. Innate Immun. 2014;21:65–72.CrossRefPubMed
32.
go back to reference Taxman DJ, Zhang J, Champagne C, Bergstralh DT, Iocca HA, Lich JD, et al. Cutting edge: ASC mediates the induction of multiple cytokines by Porphyromonas gingivalis via caspase-1-dependent and -independent pathways. J Immunol. 2006;177:4252–6.CrossRefPubMed Taxman DJ, Zhang J, Champagne C, Bergstralh DT, Iocca HA, Lich JD, et al. Cutting edge: ASC mediates the induction of multiple cytokines by Porphyromonas gingivalis via caspase-1-dependent and -independent pathways. J Immunol. 2006;177:4252–6.CrossRefPubMed
33.
go back to reference Wang K, Diao LH, Gong Y, Liu X, Li Y. NEMO differentially regulates TCR and TNF-alpha induced NF-kappaB pathways and has an inhibitory role in TCR-induced NF-kappaB activation. Cell Signal. 2012;24:1556–64.CrossRefPubMed Wang K, Diao LH, Gong Y, Liu X, Li Y. NEMO differentially regulates TCR and TNF-alpha induced NF-kappaB pathways and has an inhibitory role in TCR-induced NF-kappaB activation. Cell Signal. 2012;24:1556–64.CrossRefPubMed
34.
go back to reference Wang H, Wang Q, Pape UJ, Shen B, Huang J, Wu B, et al. Systematic investigation of global coordination among mRNA and protein in cellular society. BMC Genomics. 2010;11:364.PubMedCentralCrossRefPubMed Wang H, Wang Q, Pape UJ, Shen B, Huang J, Wu B, et al. Systematic investigation of global coordination among mRNA and protein in cellular society. BMC Genomics. 2010;11:364.PubMedCentralCrossRefPubMed
35.
go back to reference Belibasakis GN, Guggenheim B, Bostanci N. Down-regulation of NLRP3 inflammasome in gingival fibroblasts by subgingival biofilms: involvement of Porphyromonas gingivalis. Innate Immun. 2013;19:3–9.CrossRefPubMed Belibasakis GN, Guggenheim B, Bostanci N. Down-regulation of NLRP3 inflammasome in gingival fibroblasts by subgingival biofilms: involvement of Porphyromonas gingivalis. Innate Immun. 2013;19:3–9.CrossRefPubMed
36.
go back to reference Dinarello CA. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol. 2011;41:1203–17.CrossRefPubMed Dinarello CA. A clinical perspective of IL-1β as the gatekeeper of inflammation. Eur J Immunol. 2011;41:1203–17.CrossRefPubMed
38.
go back to reference Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13:397–411.CrossRefPubMed Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol. 2013;13:397–411.CrossRefPubMed
40.
go back to reference Higa N, Toma C, Nohara T, Nakasone N, Takaesu G, Suzuki T. Lose the battle to win the war: bacterial strategies for evading host inflammasome activation. Trends Microbiol. 2013;21:342–9.CrossRefPubMed Higa N, Toma C, Nohara T, Nakasone N, Takaesu G, Suzuki T. Lose the battle to win the war: bacterial strategies for evading host inflammasome activation. Trends Microbiol. 2013;21:342–9.CrossRefPubMed
41.
go back to reference Di Virgilio F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol Rev. 2013;65:872–905.CrossRefPubMed Di Virgilio F. The therapeutic potential of modifying inflammasomes and NOD-like receptors. Pharmacol Rev. 2013;65:872–905.CrossRefPubMed
42.
go back to reference Ye P, Harty DW, Chapple CC, Nadkarni MA, Carlo AA, Hunter N. Streptococci and Actinomyces induce antibodies which cross react with epithelial antigens in periodontitis. Clin Exp Immunol. 2003;131:468–76.PubMedCentralCrossRefPubMed Ye P, Harty DW, Chapple CC, Nadkarni MA, Carlo AA, Hunter N. Streptococci and Actinomyces induce antibodies which cross react with epithelial antigens in periodontitis. Clin Exp Immunol. 2003;131:468–76.PubMedCentralCrossRefPubMed
Metadata
Title
The activation of pyrin domain-containing-3 inflammasome depends on lipopolysaccharide from Porphyromonas gingivalis and extracellular adenosine triphosphate in cultured oral epithelial cells
Authors
Wei Guo
Peng Wang
Zhonghao Liu
Pishan Yang
Ping Ye
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Oral Health / Issue 1/2015
Electronic ISSN: 1472-6831
DOI
https://doi.org/10.1186/s12903-015-0115-6

Other articles of this Issue 1/2015

BMC Oral Health 1/2015 Go to the issue