Skip to main content
Top
Published in: BMC Physiology 1/2015

Open Access 01-12-2015 | Research article

Hypoxia mediated pulmonary edema: potential influence of oxidative stress, sympathetic activation and cerebral blood flow

Authors: Shadi Khademi, Melinda A. Frye, Kimberly M. Jeckel, Thies Schroeder, Eric Monnet, Dave C. Irwin, Patricia A. Cole, Christopher Bell, Benjamin F. Miller, Karyn L. Hamilton

Published in: BMC Physiology | Issue 1/2015

Login to get access

Abstract

Background

Neurogenic pulmonary edema (NPE) is a non-cardiogenic form of pulmonary edema that can occur consequent to central neurologic insults including stroke, traumatic brain injury, and seizure. NPE is a public health concern due to high morbidity and mortality, yet the mechanism(s) are unknown. We hypothesized that NPE, evoked by cerebral hypoxia in the presence of systemic normoxia, would be accompanied by sympathetic activation, oxidative stress, and compensatory antioxidant mechanisms.

Methods

Thirteen Walker hounds were assigned to cerebral hypoxia (SaO2 ~ 55 %) with systemic normoxia (SaO2 ~ 90 %) (CH; n = 6), cerebral and systemic (global) hypoxia (SaO2 ~ 60 %) (GH; n = 4), or cerebral and systemic normoxia (SaO2 ~ 90 %) (CON; n = 3). Femoral venous (CH and CON) perfusate was delivered via cardiopulmonary bypass to the brain and GH was induced by FiO2 = 10 % to maintain the SaO2 at ~60 %. Lung wet to lung dry weight ratios (LWW/LDW) were assessed as an index of pulmonary edema in addition to hemodynamic measurements. Plasma catecholamines were measured as markers of sympathetic nervous system (SNS) activity. Total glutathione, protein carbonyls, and malondialdehyde were assessed as indicators of oxidative stress. Brain and lung compensatory antioxidants were measured with immunoblotting.

Results

Compared to CON, LWW/LDW and pulmonary artery pressure were greater in CH and GH. Expression of hemeoxygenase-1 in brain was higher in CH compared to GH and CON, despite no group differences in oxidative damage in any tissue. Catecholamines tended to be higher in CH and GH.

Conclusion

Cerebral hypoxia, with systemic normoxia, is not systematically associated with an increase in oxidative stress and compensatory antioxidant enzymes in lung, suggesting oxidative stress did not contribute to NPE in lung. However, increased SNS activity may play a role in the induction of NPE during hypoxia.
Literature
1.
go back to reference Colice GL, Matthay MA, Bass E, Matthay RA. Neurogenic pulmonary edema. Am Rev Respir Dis. 1984;130:941–8.PubMed Colice GL, Matthay MA, Bass E, Matthay RA. Neurogenic pulmonary edema. Am Rev Respir Dis. 1984;130:941–8.PubMed
2.
go back to reference Baumann A, Audibert G, McDonnell J, Mertes PM. Neurogenic pulmonary edema. Acta Anaesthesiol Scand. 2007;51:447–55.CrossRefPubMed Baumann A, Audibert G, McDonnell J, Mertes PM. Neurogenic pulmonary edema. Acta Anaesthesiol Scand. 2007;51:447–55.CrossRefPubMed
3.
go back to reference McClellan MD, Dauber IM, Weil JV. Elevated intracranial pressure increases pulmonary vascular permeability to protein. J Appl Physiol. 1989;67:1185–91.PubMed McClellan MD, Dauber IM, Weil JV. Elevated intracranial pressure increases pulmonary vascular permeability to protein. J Appl Physiol. 1989;67:1185–91.PubMed
4.
go back to reference Woiciechowsky C, Volk HD. Increased intracranial pressure induces a rapid systemic interleukin-10 release through activation of the sympathetic nervous system. Acta Neurochir Suppl. 2005;95:373–6.CrossRefPubMed Woiciechowsky C, Volk HD. Increased intracranial pressure induces a rapid systemic interleukin-10 release through activation of the sympathetic nervous system. Acta Neurochir Suppl. 2005;95:373–6.CrossRefPubMed
5.
go back to reference Budd SL. Mechanisms of neuronal damage in brain hypoxia/ischemia: focus on the role of mitochondrial calcium accumulation. Pharmacol Ther. 1998;80:203–29.CrossRefPubMed Budd SL. Mechanisms of neuronal damage in brain hypoxia/ischemia: focus on the role of mitochondrial calcium accumulation. Pharmacol Ther. 1998;80:203–29.CrossRefPubMed
6.
go back to reference Moss G, Staunton C, Stein AA. Cerebral hypoxia as the primary event in the pathogenesis of the "shock lung syndrome". Surg Forum. 1971;22:211–3.PubMed Moss G, Staunton C, Stein AA. Cerebral hypoxia as the primary event in the pathogenesis of the "shock lung syndrome". Surg Forum. 1971;22:211–3.PubMed
7.
go back to reference Moss G, Staunton C, Stein AA. Cerebral etiology of the "shock lung syndrome". J Trauma. 1972;12:885–90.CrossRefPubMed Moss G, Staunton C, Stein AA. Cerebral etiology of the "shock lung syndrome". J Trauma. 1972;12:885–90.CrossRefPubMed
8.
go back to reference Moss G, Staunton C, Stein AA. The centrineurogenic etiology of the acute respiratory distress syndromes. Universal, species--independent phenomenon. Am J Surg. 1973;126:37–41.CrossRefPubMed Moss G, Staunton C, Stein AA. The centrineurogenic etiology of the acute respiratory distress syndromes. Universal, species--independent phenomenon. Am J Surg. 1973;126:37–41.CrossRefPubMed
9.
go back to reference Moss G, Stein AA. The centrineurogenic etiology of the respiratory distress syndrome: induction by isolated cerebral hypoxemia and prevention by unilateral pulmonary denervation. Am J Surg. 1976;132:352–7.CrossRefPubMed Moss G, Stein AA. The centrineurogenic etiology of the respiratory distress syndrome: induction by isolated cerebral hypoxemia and prevention by unilateral pulmonary denervation. Am J Surg. 1976;132:352–7.CrossRefPubMed
10.
go back to reference Irwin DC, Subudhi AW, Klopp L, Peterson D, Roach R, Monnet E. Pulmonary edema induced by cerebral hypoxic insult in a canine model. Aviat Space Environ Med. 2008;79:472–8.CrossRefPubMed Irwin DC, Subudhi AW, Klopp L, Peterson D, Roach R, Monnet E. Pulmonary edema induced by cerebral hypoxic insult in a canine model. Aviat Space Environ Med. 2008;79:472–8.CrossRefPubMed
11.
go back to reference Sedy J, Zicha J, Nedvidkova J, Kunes J. The role of sympathetic nervous system in the development of neurogenic pulmonary edema in spinal cord-injured rats. J Appl Physiol. 2012;112:1–8.CrossRefPubMed Sedy J, Zicha J, Nedvidkova J, Kunes J. The role of sympathetic nervous system in the development of neurogenic pulmonary edema in spinal cord-injured rats. J Appl Physiol. 2012;112:1–8.CrossRefPubMed
12.
go back to reference Wilson MH, Davagnanam I, Holland G, Dattani RS, Tamm A, Hirani SP, et al. Cerebral venous system and anatomical predisposition to high-altitude headache. Ann Neurol. 2013;73:381–9.CrossRefPubMed Wilson MH, Davagnanam I, Holland G, Dattani RS, Tamm A, Hirani SP, et al. Cerebral venous system and anatomical predisposition to high-altitude headache. Ann Neurol. 2013;73:381–9.CrossRefPubMed
13.
go back to reference Ainslie PN, Barach A, Murrell C, Hamlin M, Hellemans J, Ogoh S. Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise. Am J Physiol Heart Circ Physiol. 2007;292:H976–83.CrossRefPubMed Ainslie PN, Barach A, Murrell C, Hamlin M, Hellemans J, Ogoh S. Alterations in cerebral autoregulation and cerebral blood flow velocity during acute hypoxia: rest and exercise. Am J Physiol Heart Circ Physiol. 2007;292:H976–83.CrossRefPubMed
14.
go back to reference Bartosz G. Reactive oxygen species: destroyers or messengers? Biochem Pharmacol. 2009;77:1303–15.CrossRefPubMed Bartosz G. Reactive oxygen species: destroyers or messengers? Biochem Pharmacol. 2009;77:1303–15.CrossRefPubMed
15.
go back to reference Aruoma OI, Kaur H, Halliwell B. Oxygen free radicals and human diseases. J R Soc Health. 1991;111:172–7.CrossRefPubMed Aruoma OI, Kaur H, Halliwell B. Oxygen free radicals and human diseases. J R Soc Health. 1991;111:172–7.CrossRefPubMed
16.
go back to reference Chuang IC, Liu DD, Kao SJ, Chen HI. N-acetylcysteine attenuates the acute lung injury caused by phorbol myristate acetate in isolated rat lungs. Pulm Pharmacol Ther. 2007;20:726–33.CrossRefPubMed Chuang IC, Liu DD, Kao SJ, Chen HI. N-acetylcysteine attenuates the acute lung injury caused by phorbol myristate acetate in isolated rat lungs. Pulm Pharmacol Ther. 2007;20:726–33.CrossRefPubMed
17.
go back to reference Yumoto M, Nishida O, Nakamura F, Katsuya H. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model. J Anesth. 2005;19:287–94.CrossRefPubMed Yumoto M, Nishida O, Nakamura F, Katsuya H. Propofol attenuates oxidant-induced acute lung injury in an isolated perfused rabbit-lung model. J Anesth. 2005;19:287–94.CrossRefPubMed
18.
go back to reference Kawada T, Kambara K, Arakawa M, Segawa T, Ando F, Hirakawa S, et al. Pretreatment with catalase or dimethyl sulfoxide protects alloxan-induced acute lung edema in dogs. J Appl Physiol. 1992;73:1326–33.PubMed Kawada T, Kambara K, Arakawa M, Segawa T, Ando F, Hirakawa S, et al. Pretreatment with catalase or dimethyl sulfoxide protects alloxan-induced acute lung edema in dogs. J Appl Physiol. 1992;73:1326–33.PubMed
19.
go back to reference Rizzo AM, Berselli P, Zava S, Montorfano G, Negroni M, Corsetto P, et al. Endogenous antioxidants and radical scavengers. Adv Exp Med Biol. 2010;698:52–67.CrossRefPubMed Rizzo AM, Berselli P, Zava S, Montorfano G, Negroni M, Corsetto P, et al. Endogenous antioxidants and radical scavengers. Adv Exp Med Biol. 2010;698:52–67.CrossRefPubMed
20.
go back to reference Turpaev KT. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Biochemistry (Mosc). 2013;78:111–26.CrossRef Turpaev KT. Keap1-Nrf2 signaling pathway: mechanisms of regulation and role in protection of cells against toxicity caused by xenobiotics and electrophiles. Biochemistry (Mosc). 2013;78:111–26.CrossRef
21.
go back to reference Donovan EL, McCord JM, Reuland DJ, Miller BF, Hamilton KL. Phytochemical activation of Nrf2 protects human coronary artery endothelial cells against an oxidative challenge. Oxid Med Cell Longev. 2012;2012:132931.PubMedCentralCrossRefPubMed Donovan EL, McCord JM, Reuland DJ, Miller BF, Hamilton KL. Phytochemical activation of Nrf2 protects human coronary artery endothelial cells against an oxidative challenge. Oxid Med Cell Longev. 2012;2012:132931.PubMedCentralCrossRefPubMed
22.
go back to reference Reuland DJ, Khademi S, Castle CJ, Irwin DC, McCord JM, Miller BF, et al. Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. Free Radic Biol Med. 2013;56:102–11.CrossRefPubMed Reuland DJ, Khademi S, Castle CJ, Irwin DC, McCord JM, Miller BF, et al. Upregulation of phase II enzymes through phytochemical activation of Nrf2 protects cardiomyocytes against oxidant stress. Free Radic Biol Med. 2013;56:102–11.CrossRefPubMed
23.
go back to reference Sethy NK, Singh M, Kumar R, Ilavazhagan G, Bhargava K. Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia. Funct Integr Genomics. 2011;11:119–37.CrossRefPubMed Sethy NK, Singh M, Kumar R, Ilavazhagan G, Bhargava K. Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia. Funct Integr Genomics. 2011;11:119–37.CrossRefPubMed
24.
go back to reference Sunderram J, Semmlow J, Thakker-Varia S, Bhaumik M, Hoang-Le O, Neubauer JA. Heme oxygenase-1-dependent central cardiorespiratory adaptations to chronic hypoxia in mice. Am J Physiol Regul Integr Comp Physiol. 2009;297:R300–12.CrossRefPubMed Sunderram J, Semmlow J, Thakker-Varia S, Bhaumik M, Hoang-Le O, Neubauer JA. Heme oxygenase-1-dependent central cardiorespiratory adaptations to chronic hypoxia in mice. Am J Physiol Regul Integr Comp Physiol. 2009;297:R300–12.CrossRefPubMed
25.
go back to reference Sharma NK, Sethy NK, Bhargava K. Comparative proteome analysis reveals differential regulation of glycolytic and antioxidant enzymes in cortex and hippocampus exposed to short-term hypobaric hypoxia. J Proteomics. 2013;79:277–98.CrossRefPubMed Sharma NK, Sethy NK, Bhargava K. Comparative proteome analysis reveals differential regulation of glycolytic and antioxidant enzymes in cortex and hippocampus exposed to short-term hypobaric hypoxia. J Proteomics. 2013;79:277–98.CrossRefPubMed
26.
go back to reference Du HL, Yamada Y, Orii R, Suwa K, Hanaoka K. Vagal and sympathetic denervation in the development of oleic acid-induced pulmonary edema. Respir Physiol. 1997;107:251–61.CrossRefPubMed Du HL, Yamada Y, Orii R, Suwa K, Hanaoka K. Vagal and sympathetic denervation in the development of oleic acid-induced pulmonary edema. Respir Physiol. 1997;107:251–61.CrossRefPubMed
27.
29.
go back to reference Leuenberger U, Gleeson K, Wroblewski K, Prophet S, Zelis R, Zwillich C, et al. Norepinephrine clearance is increased during acute hypoxemia in humans. Am J Physiol. 1991;261:H1659–64.PubMed Leuenberger U, Gleeson K, Wroblewski K, Prophet S, Zelis R, Zwillich C, et al. Norepinephrine clearance is increased during acute hypoxemia in humans. Am J Physiol. 1991;261:H1659–64.PubMed
30.
go back to reference Stern N, Beahm E, McGinty D, Eggena P, Littner M, Nyby M, et al. Dissociation of 24-hour catecholamine levels from blood pressure in older men. Hypertension. 1985;7:1023–9.CrossRefPubMed Stern N, Beahm E, McGinty D, Eggena P, Littner M, Nyby M, et al. Dissociation of 24-hour catecholamine levels from blood pressure in older men. Hypertension. 1985;7:1023–9.CrossRefPubMed
31.
go back to reference Leung JM, Pastor DA. Dissociation between haemodynamics and sympathetic activation during anaesthetic induction with desfluranes. Can J Anaesth. 1998;45:533–40.CrossRefPubMed Leung JM, Pastor DA. Dissociation between haemodynamics and sympathetic activation during anaesthetic induction with desfluranes. Can J Anaesth. 1998;45:533–40.CrossRefPubMed
32.
go back to reference Bellissant E, Annane D. Effect of hydrocortisone on phenylephrine--mean arterial pressure dose–response relationship in septic shock. Clin Pharmacol Ther. 2000;68:293–303.CrossRefPubMed Bellissant E, Annane D. Effect of hydrocortisone on phenylephrine--mean arterial pressure dose–response relationship in septic shock. Clin Pharmacol Ther. 2000;68:293–303.CrossRefPubMed
33.
go back to reference Nacul FE, Guia IL, Lessa MA, Tibirica E. The effects of vasoactive drugs on intestinal functional capillary density in endotoxemic rats: intravital video-microscopy analysis. Anesth Analg. 2010;110:547–54.CrossRefPubMed Nacul FE, Guia IL, Lessa MA, Tibirica E. The effects of vasoactive drugs on intestinal functional capillary density in endotoxemic rats: intravital video-microscopy analysis. Anesth Analg. 2010;110:547–54.CrossRefPubMed
34.
go back to reference Hoen S, Mazoit JX, Asehnoune K, Brailly-Tabard S, Benhamou D, Moine P, et al. Hydrocortisone increases the sensitivity to alpha1-adrenoceptor stimulation in humans following hemorrhagic shock. Crit Care Med. 2005;33:2737–43.CrossRefPubMed Hoen S, Mazoit JX, Asehnoune K, Brailly-Tabard S, Benhamou D, Moine P, et al. Hydrocortisone increases the sensitivity to alpha1-adrenoceptor stimulation in humans following hemorrhagic shock. Crit Care Med. 2005;33:2737–43.CrossRefPubMed
35.
go back to reference Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free radical biology & medicine 2013, Epub ahead of print. Niture SK, Khatri R, Jaiswal AK. Regulation of Nrf2-an update. Free radical biology & medicine 2013, Epub ahead of print.
36.
go back to reference Peng B, Zhao P, Lu YP, Chen MM, Sun H, Wu XM, et al. Z-ligustilide activates the Nrf2/HO-1 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro. Brain Res. 2013;1520:168–77.CrossRefPubMed Peng B, Zhao P, Lu YP, Chen MM, Sun H, Wu XM, et al. Z-ligustilide activates the Nrf2/HO-1 pathway and protects against cerebral ischemia-reperfusion injury in vivo and in vitro. Brain Res. 2013;1520:168–77.CrossRefPubMed
37.
go back to reference Roux JC, Pequignot JM, Dumas S, Pascual O, Ghilini G, Pequignot J, et al. O2-sensing after carotid chemodenervation: hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells. Eur J Neurosci. 2000;12:3181–90.CrossRefPubMed Roux JC, Pequignot JM, Dumas S, Pascual O, Ghilini G, Pequignot J, et al. O2-sensing after carotid chemodenervation: hypoxic ventilatory responsiveness and upregulation of tyrosine hydroxylase mRNA in brainstem catecholaminergic cells. Eur J Neurosci. 2000;12:3181–90.CrossRefPubMed
38.
go back to reference Tumer N, Svetlov S, Whidden M, Kirichenko N, Prima V, Erdos B, et al. Overpressure blast-wave induced brain injury elevates oxidative stress in the hypothalamus and catecholamine biosynthesis in the rat adrenal medulla. Neurosci Lett. 2013;544:62–7.CrossRefPubMed Tumer N, Svetlov S, Whidden M, Kirichenko N, Prima V, Erdos B, et al. Overpressure blast-wave induced brain injury elevates oxidative stress in the hypothalamus and catecholamine biosynthesis in the rat adrenal medulla. Neurosci Lett. 2013;544:62–7.CrossRefPubMed
39.
go back to reference Mazza E, Thakkar-Varia S, Tozzi CA, Neubauer JA. Expression of heme oxygenase in the oxygen-sensing regions of the rostral ventrolateral medulla. J Appl Physiol. 2001;91:379–85.PubMed Mazza E, Thakkar-Varia S, Tozzi CA, Neubauer JA. Expression of heme oxygenase in the oxygen-sensing regions of the rostral ventrolateral medulla. J Appl Physiol. 2001;91:379–85.PubMed
40.
go back to reference Hocker SE, Fogelson J, Rabinstein AA. Refractory intracranial hypertension due to fentanyl administration following closed head injury. Front Neurol. 2013;4:3.PubMedCentralCrossRefPubMed Hocker SE, Fogelson J, Rabinstein AA. Refractory intracranial hypertension due to fentanyl administration following closed head injury. Front Neurol. 2013;4:3.PubMedCentralCrossRefPubMed
41.
go back to reference Ploutz-Snyder RJ, Fiedler J, Feiveson AH. Justifying small-n research in scientifically amazing settings: Challenging the notion that only "big-n" studies are worthwhile. J Appl Physiol (1985). 2014;116:1251–2.CrossRef Ploutz-Snyder RJ, Fiedler J, Feiveson AH. Justifying small-n research in scientifically amazing settings: Challenging the notion that only "big-n" studies are worthwhile. J Appl Physiol (1985). 2014;116:1251–2.CrossRef
42.
go back to reference Crutchfield JS, Narayan RK, Robertson CS, Michael LH. Evaluation of a fiberoptic intracranial pressure monitor. J Neurosurg. 1990;72:482–7.CrossRefPubMed Crutchfield JS, Narayan RK, Robertson CS, Michael LH. Evaluation of a fiberoptic intracranial pressure monitor. J Neurosurg. 1990;72:482–7.CrossRefPubMed
Metadata
Title
Hypoxia mediated pulmonary edema: potential influence of oxidative stress, sympathetic activation and cerebral blood flow
Authors
Shadi Khademi
Melinda A. Frye
Kimberly M. Jeckel
Thies Schroeder
Eric Monnet
Dave C. Irwin
Patricia A. Cole
Christopher Bell
Benjamin F. Miller
Karyn L. Hamilton
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Physiology / Issue 1/2015
Electronic ISSN: 1472-6793
DOI
https://doi.org/10.1186/s12899-015-0018-4

Other articles of this Issue 1/2015

BMC Physiology 1/2015 Go to the issue