Skip to main content
Top
Published in: BMC Urology 1/2020

Open Access 01-12-2020 | Prostate Cancer | Research article

Contrast-enhanced transrectal ultrasound can reduce collection of unnecessary biopsies when diagnosing prostate cancer and is predictive of biochemical recurrence following a radical prostatectomy in patients with localized prostate cancer

Authors: Hong-wei Zhao, Jian Li, Jia-Zheng Cao, Juan Lin, Zhu Wang, Jian-yao Lv, Jin-huan Wei, Zhen-hua Chen, Hao-hua Yao, Yi-hui Pan, Zhen-li Gao, Jun-hang Luo, Wei Chen, Lei Shi, Yong Fang

Published in: BMC Urology | Issue 1/2020

Login to get access

Abstract

Background

To investigate the value of using contrast-enhanced transrectal ultrasound (CETRUS) to reduce unnecessary collection of biopsies during prostate cancer diagnosis and its utility in predicting biochemical recurrence in patients with localized prostate cancer.

Methods

This was a prospective study of suspected prostate cancer patients who were evaluated with CETRUS followed by a prostate biopsy. Prostate blood flow via CETRUS was graded using a 5-point scale. The relationship between CETRUS score and biopsy outcome was then analyzed for all patients; univariate and multi-variate analyses were used to determine the probable prognostic factors for biochemical recurrence in patients with localized prostate cancer that underwent a radical prostatectomy.

Results

A total of 347 patients were enrolled in the study. Prostate cancer was found in 164 patients. A significant positive correlation (r = 0.69, p < 0.001) was found between CETRUS scores and prostate cancer incidence. Using CETRUS scores ≥2 as the threshold for when to biopsy could have safely reduced the number of biopsies taken overall by 12.1% (42/347) and spared 23.0% (42/183) of patients from undergoing an unnecessary biopsy. 77 patients with localized prostate cancer underwent a radical prostatectomy. The median follow-up time was 30 months (range: 8–56 months) and 17 of these 77 patients exhibited biochemical recurrence during the follow-up period. 3-year biochemical recurrence-free survival rates were 86% for patients with low CETRUS scores (≤ 3) and 59% for patients with high scores (> 3; p = 0.015). Multivariate Cox regression analysis indicated that CETRUS score was an independent predictor of biochemical recurrence (HR: 7.02; 95% CI: 2.00–24.69; p = 0.002).

Conclusions

CETRUS scores may be a useful tool for reducing the collection unnecessary biopsy samples during prostate cancer diagnosis and are predictive of biochemical recurrence in patients with localized prostate cancer following a radical prostatectomy.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRef Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.CrossRef
2.
go back to reference Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRef Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66:115–32.CrossRef
3.
go back to reference Vickers AJ, Roobol MJ, Lilja H. Screening for prostate cancer: early detection or overdetection? Annu Rev Med. 2012;63:161–70.CrossRef Vickers AJ, Roobol MJ, Lilja H. Screening for prostate cancer: early detection or overdetection? Annu Rev Med. 2012;63:161–70.CrossRef
4.
go back to reference Hayes JH, Barry MJ. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA. 2014;311:1143–9.CrossRef Hayes JH, Barry MJ. Screening for prostate cancer with the prostate-specific antigen test: a review of current evidence. JAMA. 2014;311:1143–9.CrossRef
6.
go back to reference Blum DL, Koyama T, M'Koma AE, et al. Chemokine markers predict biochemical recurrence of prostate cancer following prostatectomy. Clin Cancer Res. 2008:7790–7. Blum DL, Koyama T, M'Koma AE, et al. Chemokine markers predict biochemical recurrence of prostate cancer following prostatectomy. Clin Cancer Res. 2008:7790–7.
7.
go back to reference Postema AW, Frinking PJ, Smeenge M, et al. Dynamic contrast-enhanced ultrasound. parametric imaging for the detection of prostate cancer. BJU Int. 2016;117:598–603.CrossRef Postema AW, Frinking PJ, Smeenge M, et al. Dynamic contrast-enhanced ultrasound. parametric imaging for the detection of prostate cancer. BJU Int. 2016;117:598–603.CrossRef
8.
go back to reference Uemura H, Sano F, Nomiya A, et al. Usefulness of perflubutane microbubble-enhanced ultrasound in imaging and detection of prostate cancer: phase II multicenter clinical trial. World J Urol. 2013;31:1123–8.CrossRef Uemura H, Sano F, Nomiya A, et al. Usefulness of perflubutane microbubble-enhanced ultrasound in imaging and detection of prostate cancer: phase II multicenter clinical trial. World J Urol. 2013;31:1123–8.CrossRef
9.
go back to reference Sano F, Uemura H. The utility and limitations of contrast-enhanced ultrasound for the diagnosis and treatment of prostate cancer. Sensors (Basel). 2015;15:4947–57.CrossRef Sano F, Uemura H. The utility and limitations of contrast-enhanced ultrasound for the diagnosis and treatment of prostate cancer. Sensors (Basel). 2015;15:4947–57.CrossRef
10.
go back to reference Gao Y, Liao XH, Ma Y, et al. Prostate ultrasound imaging: evaluation of a two-step scoring system in the diagnosis of prostate cancer. Discov Med. 2017;24:295–303.PubMed Gao Y, Liao XH, Ma Y, et al. Prostate ultrasound imaging: evaluation of a two-step scoring system in the diagnosis of prostate cancer. Discov Med. 2017;24:295–303.PubMed
11.
go back to reference Trabulsi EJ, Sackett D, Gomella LG, et al. Enhanced transrectal ultrasound modalities in the diagnosis of prostate cancer. Urology. 2010;76:1025–33.CrossRef Trabulsi EJ, Sackett D, Gomella LG, et al. Enhanced transrectal ultrasound modalities in the diagnosis of prostate cancer. Urology. 2010;76:1025–33.CrossRef
12.
go back to reference Halpern EJ. Contrast-enhanced ultrasound imaging of prostate cancer. Rev Urol. 2006;8(Suppl 1):29–37. Halpern EJ. Contrast-enhanced ultrasound imaging of prostate cancer. Rev Urol. 2006;8(Suppl 1):29–37.
13.
go back to reference Li X, Pan Y, Huang Y, et al. Developing a model for forecasting Gleason score ≥7 in potential prostate cancer patients to reduce unnecessary prostate biopsies. Int Urol Nephrol. 2016;48:535–40.CrossRef Li X, Pan Y, Huang Y, et al. Developing a model for forecasting Gleason score ≥7 in potential prostate cancer patients to reduce unnecessary prostate biopsies. Int Urol Nephrol. 2016;48:535–40.CrossRef
14.
go back to reference Adesunloye BA, Karzai FH, Dahut WL. Angiogenesis inhibitors in the treatment of prostate cancer. Chem Immunol Allergy. 2014;99:197–215.CrossRef Adesunloye BA, Karzai FH, Dahut WL. Angiogenesis inhibitors in the treatment of prostate cancer. Chem Immunol Allergy. 2014;99:197–215.CrossRef
15.
go back to reference Grivas N, Goussia A, Stefanou D, et al. Microvascular density and immunohistochemical expression of VEGF, VEGFR-1 and VEGFR-2 in benign prostatic hyperplasia, high-grade prostate intraepithelial neoplasia and prostate cancer. Cent European J Urol. 2016;69:63–71.PubMedPubMedCentral Grivas N, Goussia A, Stefanou D, et al. Microvascular density and immunohistochemical expression of VEGF, VEGFR-1 and VEGFR-2 in benign prostatic hyperplasia, high-grade prostate intraepithelial neoplasia and prostate cancer. Cent European J Urol. 2016;69:63–71.PubMedPubMedCentral
16.
go back to reference Schalk SG, Demi L, Bouhouch N, et al. Contrast-enhanced ultrasound angiogenesis imaging by mutual information analysis for prostate Cancer localization. IEEE Trans Biomed Eng. 2017;64:661–70.CrossRef Schalk SG, Demi L, Bouhouch N, et al. Contrast-enhanced ultrasound angiogenesis imaging by mutual information analysis for prostate Cancer localization. IEEE Trans Biomed Eng. 2017;64:661–70.CrossRef
17.
go back to reference Kay PA, Robb RA, Bostwick DG. Prostate cancer microvessels: a novel method for three-dimensional reconstruction and analysis. Prostate. 1998;37:270–7.CrossRef Kay PA, Robb RA, Bostwick DG. Prostate cancer microvessels: a novel method for three-dimensional reconstruction and analysis. Prostate. 1998;37:270–7.CrossRef
18.
go back to reference Wulphert Venderink, Tim M Govers, Maarten de Rooij, Jurgen J Fütterer, J P Michiel Sedelaar (2015) Cost-Effectiveness Comparison of Imaging-Guided Prostate Biopsy Techniques: Systematic Transrectal Ultrasound, Direct In-Bore MRI, and Image Fusion. AJR Am J Roentgenol :208 (5), 1058–1063. Wulphert Venderink, Tim M Govers, Maarten de Rooij, Jurgen J Fütterer, J P Michiel Sedelaar (2015) Cost-Effectiveness Comparison of Imaging-Guided Prostate Biopsy Techniques: Systematic Transrectal Ultrasound, Direct In-Bore MRI, and Image Fusion. AJR Am J Roentgenol :208 (5), 1058–1063.
19.
go back to reference Sedelaar JP, van Leenders GJ, Hulsbergen-van de Kaa CA, et al. Microvessel density: correlation between contrast ultrasonography and histology of prostate cancer. Eur Urol. 2001;40:285–93.CrossRef Sedelaar JP, van Leenders GJ, Hulsbergen-van de Kaa CA, et al. Microvessel density: correlation between contrast ultrasonography and histology of prostate cancer. Eur Urol. 2001;40:285–93.CrossRef
20.
go back to reference Claudon M, Cosgrove D, Albrecht T, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) - update 2008. Ultraschall Med. 2008;29:28–44.CrossRef Claudon M, Cosgrove D, Albrecht T, et al. Guidelines and good clinical practice recommendations for contrast enhanced ultrasound (CEUS) - update 2008. Ultraschall Med. 2008;29:28–44.CrossRef
21.
go back to reference de Zordo T, Ladurner M, Horninger W, et al. New ultrasound technologies for the diagnostics of prostate cancer. Radiologe. 2011;51:940–6.CrossRef de Zordo T, Ladurner M, Horninger W, et al. New ultrasound technologies for the diagnostics of prostate cancer. Radiologe. 2011;51:940–6.CrossRef
22.
go back to reference Sano F, Terao H, Kawahara T, et al. Contrast-enhanced ultrasonography of the prostate: various imaging findings that indicate prostate cancer. BJU Int. 2011;107:1404–10.CrossRef Sano F, Terao H, Kawahara T, et al. Contrast-enhanced ultrasonography of the prostate: various imaging findings that indicate prostate cancer. BJU Int. 2011;107:1404–10.CrossRef
23.
go back to reference Aigner F, Mitterberger M, Rehder P, et al. Status of transrectal ultrasound imaging of the prostate. J Endourol. 2010;24:685–91.CrossRef Aigner F, Mitterberger M, Rehder P, et al. Status of transrectal ultrasound imaging of the prostate. J Endourol. 2010;24:685–91.CrossRef
24.
go back to reference Frauscher F, Klauser A, Halpern EJ, et al. Detection of prostate cancer with a microbubble ultrasound contrast agent. Lancet. 2001;357:1849–50.CrossRef Frauscher F, Klauser A, Halpern EJ, et al. Detection of prostate cancer with a microbubble ultrasound contrast agent. Lancet. 2001;357:1849–50.CrossRef
25.
go back to reference Erbersdobler A, Isbarn H, Dix K, et al. Prognostic value of microvessel density in prostate cancer: a tissue microarray study. World J Urol. 2010;28:687–92.CrossRef Erbersdobler A, Isbarn H, Dix K, et al. Prognostic value of microvessel density in prostate cancer: a tissue microarray study. World J Urol. 2010;28:687–92.CrossRef
26.
go back to reference Talagas M, Uguen A, Garlantezec R, et al. VEGFR1 and NRP1 endothelial expressions predict distant relapse after radical prostatectomy in clinically localized prostate cancer. Anticancer Res. 2013;33:2065–75.PubMed Talagas M, Uguen A, Garlantezec R, et al. VEGFR1 and NRP1 endothelial expressions predict distant relapse after radical prostatectomy in clinically localized prostate cancer. Anticancer Res. 2013;33:2065–75.PubMed
27.
go back to reference Nordby Y, Andersen S, Richardsen E, et al. Stromal expression of VEGF-A and VEGFR-2 in prostate tissue is associated with biochemical and clinical recurrence after radical prostatectomy. Prostate. 2015;75:1682–93.CrossRef Nordby Y, Andersen S, Richardsen E, et al. Stromal expression of VEGF-A and VEGFR-2 in prostate tissue is associated with biochemical and clinical recurrence after radical prostatectomy. Prostate. 2015;75:1682–93.CrossRef
28.
go back to reference Xu G, Wu J, Yao MH, et al. Parameters of prostate Cancer at contrast-enhanced ultrasound: correlation with prostate cancer risk. Int J Clin Exp Med. 2015;8:2562–9.PubMedPubMedCentral Xu G, Wu J, Yao MH, et al. Parameters of prostate Cancer at contrast-enhanced ultrasound: correlation with prostate cancer risk. Int J Clin Exp Med. 2015;8:2562–9.PubMedPubMedCentral
29.
30.
go back to reference Mitterberger M, Aigner F, Pinggera GM, et al. Contrast-enhanced colour Doppler-targeted prostate biopsy: correlation of a subjective blood-flow rating scale with the histopathological outcome of the biopsy. BJU Int. 2010;106:1315–8.CrossRef Mitterberger M, Aigner F, Pinggera GM, et al. Contrast-enhanced colour Doppler-targeted prostate biopsy: correlation of a subjective blood-flow rating scale with the histopathological outcome of the biopsy. BJU Int. 2010;106:1315–8.CrossRef
Metadata
Title
Contrast-enhanced transrectal ultrasound can reduce collection of unnecessary biopsies when diagnosing prostate cancer and is predictive of biochemical recurrence following a radical prostatectomy in patients with localized prostate cancer
Authors
Hong-wei Zhao
Jian Li
Jia-Zheng Cao
Juan Lin
Zhu Wang
Jian-yao Lv
Jin-huan Wei
Zhen-hua Chen
Hao-hua Yao
Yi-hui Pan
Zhen-li Gao
Jun-hang Luo
Wei Chen
Lei Shi
Yong Fang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2020
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-020-00659-6

Other articles of this Issue 1/2020

BMC Urology 1/2020 Go to the issue