Skip to main content
Top
Published in: BMC Urology 1/2020

01-12-2020 | Prostate Cancer | Research article

miR-185 inhibits prostate cancer angiogenesis induced by the nodal/ALK4 pathway

Authors: Youkong Li, Wen Zhong, Min Zhu, Mengbo Li, Zhenwei Yang

Published in: BMC Urology | Issue 1/2020

Login to get access

Abstract

Background

Inhibition of angiogenesis in prostatic cancer could be a brand-new method to suppress tumour progression. Nodal/ALK4 has been associated with vascularization in many cancers. However, the relationship between and role of Nodal/ALK4 and miR-185 in human prostatic cancer is still unknown.

Methods

Prostatic cancer DU145 cells and LNCaP cells were used to investigate the angiogenic effect induced by Nodal and the anti-angiogenic roles of miR-185. Colony formation assay, MTT assay, transwell assay and tube formation assay were used to explore cell proliferation, migration and tube-forming ability, respectively. A luciferase reporter assay confirmed the binding relationship between miR-185 and ALK4. The expression levels of miR-185, ALK4 and VEGF were detected by qRT-PCR and Western blotting. The effects of miR-185 and Nodal in prostate cancer were also investigated in animal experiments.

Results

VEGF expression was increased in DU145 cells and LNCaP cells after Nodal incubation, and Nodal activated the proliferation ability of prostatic cancer cells and the migration and tube-forming ability of human umbilical vein endothelial cells (HUVECs), which were all inhibited by treatment with the Nodal inhibitor SB431524. Bioinformatics analysis and luciferase assay were used to verify miR-185 as a target of ALK4. Prostatic cancer cell proliferation was inhibited by overexpression of miR-185, which was shown to regulate the migration and angiogenesis of HUVECs by targeting ALK4 for suppression. miR-185 also showed a significant inverse correlation with Nodal treatment and reversed the angiogenic effects induced by Nodal. More importantly, for the first time, xenograft experiments indicated that overexpression of miR-185 suppressed tumour development.

Conclusion

The Nodal/ALK4 pathway is important in the angiogenesis of prostate cancer and can be inhibited by targeting miR-185 to downregulate ALK4. These findings provide a new perspective on the mechanism of prostate cancer formation.
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRef
2.
go back to reference Chen R, Ren S, Yiu MK, Fai NC, Cheng WS, Ian LH, et al. Prostate cancer in Asia: a collaborative report. Asian J Urol. 2014;1(1):15–29.CrossRef Chen R, Ren S, Yiu MK, Fai NC, Cheng WS, Ian LH, et al. Prostate cancer in Asia: a collaborative report. Asian J Urol. 2014;1(1):15–29.CrossRef
3.
go back to reference Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005;9(4):777–94.CrossRef Byrne AM, Bouchier-Hayes DJ, Harmey JH. Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med. 2005;9(4):777–94.CrossRef
4.
go back to reference Bodenstine TM, Chandler GS, Seftor REB, Seftor EA, Hendrix MJC. Plasticity underlies tumor progression: role of nodal signaling. Cancer Metastasis Rev. 2016;35(1):21–39.CrossRef Bodenstine TM, Chandler GS, Seftor REB, Seftor EA, Hendrix MJC. Plasticity underlies tumor progression: role of nodal signaling. Cancer Metastasis Rev. 2016;35(1):21–39.CrossRef
5.
go back to reference Gong W, Sun B, Sun H, Zhao X, Zhang D, Liu T, et al. Nodal signaling activates the Smad2/3 pathway to regulate stem cell-like properties in breast cancer cells. Am J Cancer Res. 2017;7(3):503.PubMedPubMedCentral Gong W, Sun B, Sun H, Zhao X, Zhang D, Liu T, et al. Nodal signaling activates the Smad2/3 pathway to regulate stem cell-like properties in breast cancer cells. Am J Cancer Res. 2017;7(3):503.PubMedPubMedCentral
6.
go back to reference Vo BT, Khan SA. Expression of nodal and nodal receptors in prostate stem cells and prostate cancer cells: autocrine effects on cell proliferation and migration. Prostate. 2011;71(10):1084–96.CrossRef Vo BT, Khan SA. Expression of nodal and nodal receptors in prostate stem cells and prostate cancer cells: autocrine effects on cell proliferation and migration. Prostate. 2011;71(10):1084–96.CrossRef
7.
go back to reference Liu TJ, Sun BC, Zhao XL, Zhao XM, Sun T, Gu Q, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013;32(5):544.CrossRef Liu TJ, Sun BC, Zhao XL, Zhao XM, Sun T, Gu Q, et al. CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 2013;32(5):544.CrossRef
8.
go back to reference Gordanpour A, Nam RK, Sugar L, Seth A. MicroRNAs in prostate cancer: from biomarkers to molecularly-based therapeutics. Prostate Cancer Prostatic Dis. 2012;15(4):314.CrossRef Gordanpour A, Nam RK, Sugar L, Seth A. MicroRNAs in prostate cancer: from biomarkers to molecularly-based therapeutics. Prostate Cancer Prostatic Dis. 2012;15(4):314.CrossRef
9.
go back to reference Hou J, Liu L, Zhu Q, Wu Y, Tian B, Cui L, et al. MicroRNA-185 inhibits angiogenesis in human microvascular endothelial cells through targeting stromal interaction molecule 1. Cell Biol Int. 2016;40(3):318–28.CrossRef Hou J, Liu L, Zhu Q, Wu Y, Tian B, Cui L, et al. MicroRNA-185 inhibits angiogenesis in human microvascular endothelial cells through targeting stromal interaction molecule 1. Cell Biol Int. 2016;40(3):318–28.CrossRef
10.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.CrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.CrossRef
11.
go back to reference Quail DF, Walsh LA, Zhang G, Findlay SD, Moreno J, Fung L, et al. Embryonic protein nodal promotes breast cancer vascularization. Cancer Res. 2012;72(15):3851–63.CrossRef Quail DF, Walsh LA, Zhang G, Findlay SD, Moreno J, Fung L, et al. Embryonic protein nodal promotes breast cancer vascularization. Cancer Res. 2012;72(15):3851–63.CrossRef
12.
go back to reference Strizzi L, Hardy KM, Kirsammer GT, Gerami P, Hendrix MJC. Embryonic signaling in melanoma: potential for diagnosis and therapy. Lab Investig. 2011;91(6):819.CrossRef Strizzi L, Hardy KM, Kirsammer GT, Gerami P, Hendrix MJC. Embryonic signaling in melanoma: potential for diagnosis and therapy. Lab Investig. 2011;91(6):819.CrossRef
13.
go back to reference Taylor RA, Fraser M, Livingstone J, Espiritu SMG, Thorne H, Huang V, et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun. 2017;8:13671.CrossRef Taylor RA, Fraser M, Livingstone J, Espiritu SMG, Thorne H, Huang V, et al. Germline BRCA2 mutations drive prostate cancers with distinct evolutionary trajectories. Nat Commun. 2017;8:13671.CrossRef
14.
go back to reference Lawrence MG, Margaryan NV, Loessner D, Collins A, Kerr KM, Turner M, et al. Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells. Prostate. 2011;71(11):1198–209.CrossRef Lawrence MG, Margaryan NV, Loessner D, Collins A, Kerr KM, Turner M, et al. Reactivation of embryonic nodal signaling is associated with tumor progression and promotes the growth of prostate cancer cells. Prostate. 2011;71(11):1198–209.CrossRef
15.
go back to reference van Iterson V, Leidenius M, von Smitten K, Bono P, Heikkilä P. VEGF-D in association with VEGFR-3 promotes nodal metastasis in human invasive lobular breast cancer. Am J Clin Pathol. 2007;128(5):759–66.CrossRef van Iterson V, Leidenius M, von Smitten K, Bono P, Heikkilä P. VEGF-D in association with VEGFR-3 promotes nodal metastasis in human invasive lobular breast cancer. Am J Clin Pathol. 2007;128(5):759–66.CrossRef
16.
go back to reference Hueng D-Y, Hsieh C-H, Cheng Y-C, Tsai W-C, Chen Y. Cordycepin inhibits migration of human glioblastoma cells by affecting lysosomal degradation and protein phosphatase activation. J Nutr Biochem. 2017;41:109–16.CrossRef Hueng D-Y, Hsieh C-H, Cheng Y-C, Tsai W-C, Chen Y. Cordycepin inhibits migration of human glioblastoma cells by affecting lysosomal degradation and protein phosphatase activation. J Nutr Biochem. 2017;41:109–16.CrossRef
17.
go back to reference Fang M, Li Y, Wu Y, Ning Z, Wang X, Li X. MiR-185 silencing promotes the progression of atherosclerosis via targeting stromal interaction molecule 1. Cell Cycle. 2019 (just-accepted). Fang M, Li Y, Wu Y, Ning Z, Wang X, Li X. MiR-185 silencing promotes the progression of atherosclerosis via targeting stromal interaction molecule 1. Cell Cycle. 2019 (just-accepted).
18.
go back to reference Takahashi Y, Forrest ARR, Maeno E, Hashimoto T, Daub CO, Yasuda J. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One. 2009;4(8):e6677.CrossRef Takahashi Y, Forrest ARR, Maeno E, Hashimoto T, Daub CO, Yasuda J. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One. 2009;4(8):e6677.CrossRef
19.
go back to reference Tang H, Liu P, Yang L, Xie X, Ye F, Wu M, et al. miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther. 2014;13(12):3185–97.CrossRef Tang H, Liu P, Yang L, Xie X, Ye F, Wu M, et al. miR-185 suppresses tumor proliferation by directly targeting E2F6 and DNMT1 and indirectly upregulating BRCA1 in triple-negative breast cancer. Mol Cancer Ther. 2014;13(12):3185–97.CrossRef
20.
go back to reference Liu M, Lang N, Chen X, Tang Q, Liu S, Huang J, et al. miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett. 2011;301(2):151–60.CrossRef Liu M, Lang N, Chen X, Tang Q, Liu S, Huang J, et al. miR-185 targets RhoA and Cdc42 expression and inhibits the proliferation potential of human colorectal cells. Cancer Lett. 2011;301(2):151–60.CrossRef
21.
go back to reference Sun C-C, Zhang L, Li G, Li S-J, Chen Z-L, Fu Y-F, et al. The lncRNA PDIA3P interacts with miR-185-5p to modulate oral squamous cell carcinoma progression by targeting cyclin D2. Mol Ther Nucleic Acids. 2017;9:100–10.CrossRef Sun C-C, Zhang L, Li G, Li S-J, Chen Z-L, Fu Y-F, et al. The lncRNA PDIA3P interacts with miR-185-5p to modulate oral squamous cell carcinoma progression by targeting cyclin D2. Mol Ther Nucleic Acids. 2017;9:100–10.CrossRef
22.
go back to reference Dong-Xu W, Jia L, Su-Juan Z. MicroRNA-185 is a novel tumor suppressor by negatively modulating the Wnt/β-catenin pathway in human colorectal cancer. Indian J Cancer. 2015;52(7):182.CrossRef Dong-Xu W, Jia L, Su-Juan Z. MicroRNA-185 is a novel tumor suppressor by negatively modulating the Wnt/β-catenin pathway in human colorectal cancer. Indian J Cancer. 2015;52(7):182.CrossRef
23.
go back to reference Pan Z, Liu L, Nie W, Miggin S, Qiu F, Cao Y, et al. Long non-coding rna ager-1 functionally upregulates the innate immunity gene ager and approximates its anti-tumor effect in lung cancer. Mol Carcinog. 2018;57(3):305–18.CrossRef Pan Z, Liu L, Nie W, Miggin S, Qiu F, Cao Y, et al. Long non-coding rna ager-1 functionally upregulates the innate immunity gene ager and approximates its anti-tumor effect in lung cancer. Mol Carcinog. 2018;57(3):305–18.CrossRef
24.
go back to reference Zhu SM, Chen CM, Jiang ZY, Yuan B, Ji M, Wu FH, et al. MicroRNA-185 inhibits cell proliferation and epithelial-mesenchymal transition in hepatocellular carcinoma by targeting Six2. Eur Rev Med Pharmacol Sci. 2016;20(9):1712–9.PubMed Zhu SM, Chen CM, Jiang ZY, Yuan B, Ji M, Wu FH, et al. MicroRNA-185 inhibits cell proliferation and epithelial-mesenchymal transition in hepatocellular carcinoma by targeting Six2. Eur Rev Med Pharmacol Sci. 2016;20(9):1712–9.PubMed
25.
go back to reference Zeng Q, Tao X, Huang F, Wu T, Wang J, Jiang X, et al. Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2. Int J Mol Med. 2016;37(5):1274–80.CrossRef Zeng Q, Tao X, Huang F, Wu T, Wang J, Jiang X, et al. Overexpression of miR-155 promotes the proliferation and invasion of oral squamous carcinoma cells by regulating BCL6/cyclin D2. Int J Mol Med. 2016;37(5):1274–80.CrossRef
26.
go back to reference Qu F, Cui X, Hong Y, Wang J, Li Y, Chen L, et al. MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Mol Cell Biochem. 2013;377(1–2):121–30.CrossRef Qu F, Cui X, Hong Y, Wang J, Li Y, Chen L, et al. MicroRNA-185 suppresses proliferation, invasion, migration, and tumorigenicity of human prostate cancer cells through targeting androgen receptor. Mol Cell Biochem. 2013;377(1–2):121–30.CrossRef
27.
go back to reference Li X, Chen Y-T, Josson S, Mukhopadhyay NK, Kim J, Freeman MR, et al. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PloS one. 2013;8(8). Li X, Chen Y-T, Josson S, Mukhopadhyay NK, Kim J, Freeman MR, et al. MicroRNA-185 and 342 inhibit tumorigenicity and induce apoptosis through blockade of the SREBP metabolic pathway in prostate cancer cells. PloS one. 2013;8(8).
Metadata
Title
miR-185 inhibits prostate cancer angiogenesis induced by the nodal/ALK4 pathway
Authors
Youkong Li
Wen Zhong
Min Zhu
Mengbo Li
Zhenwei Yang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2020
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-020-00617-2

Other articles of this Issue 1/2020

BMC Urology 1/2020 Go to the issue