Skip to main content
Top
Published in: BMC Urology 1/2019

Open Access 01-12-2019 | Ultrasound | Research article

Improving ultrasound-based prostate volume estimation

Authors: Saro Aprikian, Murilo Luz, Fadi Brimo, Eleonora Scarlata, Lucie Hamel, Fabio L. Cury, Simon Tanguay, Armen G. Aprikian, Wassim Kassouf, Simone Chevalier

Published in: BMC Urology | Issue 1/2019

Login to get access

Abstract

Background

To define a new coefficient to be used in the formula (Volume = L x H x W x Coefficient) that better estimates prostate volume using dimensions of fresh prostates from patients who had transrectal ultrasound (TRUS) imaging prior to prostatectomy.

Methods

The prostate was obtained from 153 patients, weighed and measured to obtain length (L), height (H), and width (W). The density was determined by water displacement to calculate volume. TRUS data were retrieved from patient charts. Linear regression analyses were performed to compare various prostate volume formulas, including the commonly used ellipsoid formula and newly introduced bullet-shaped formula.

Results

By relating measured prostate volumes from fresh prostates to TRUS-estimated prostate volumes, 0.66 was the best fitting coefficient in the (L x H x W x Coefficient) equation. This newfound coefficient combined with outlier removal yielded a linear equation with an R2 of 0.64, compared to 0.55 and 0.60, for the ellipsoid and bullet, respectively. By comparing each of the measured vs. estimated dimensions, we observed that the mean prostate height and length were overestimated by 11.1 and 10.8% using ultrasound (p < 0.05), respectively, while the mean width was similar (p > 0.05). Overall, the ellipsoid formula underestimates prostate volumes by 18%, compared to an overestimation of 4.6 and 5.7% for the bullet formula and the formula using our coefficient, respectively.

Conclusions

This study defines, for the first time, a coefficient based on freshly resected prostates as a reference to estimate volumes by imaging. Our findings support a bullet rather than an ellipsoid prostate shape. Moreover, substituting the coefficient commonly used in the ellipsoid formula by our calculated coefficient in the equation estimating prostate volume by TRUS, provides a more accurate value of the true prostate volume.
Literature
2.
go back to reference Jue JS, Barboza MP, Prakash NS, Venkatramani V, Sinha VR, Pavan N, Nahar B, Kanabur P, Ahdoot M, Dong Y, et al. Re-examining prostate-specific antigen (PSA) density: defining the optimal PSA range and patients for using PSA density to predict prostate Cancer using extended template biopsy. Urology. 2017;105:123–8.CrossRef Jue JS, Barboza MP, Prakash NS, Venkatramani V, Sinha VR, Pavan N, Nahar B, Kanabur P, Ahdoot M, Dong Y, et al. Re-examining prostate-specific antigen (PSA) density: defining the optimal PSA range and patients for using PSA density to predict prostate Cancer using extended template biopsy. Urology. 2017;105:123–8.CrossRef
3.
go back to reference Harvey CJ, Pilcher J, Richenberg J, Patel U, Frauscher F. Applications of transrectal ultrasound in prostate cancer. Br J Radiol. 2012;85 Spec No(1):S3–17.CrossRef Harvey CJ, Pilcher J, Richenberg J, Patel U, Frauscher F. Applications of transrectal ultrasound in prostate cancer. Br J Radiol. 2012;85 Spec No(1):S3–17.CrossRef
4.
go back to reference Lee JS, Chung BH. Transrectal ultrasound versus magnetic resonance imaging in the estimation of prostate volume as compared with radical prostatectomy specimens. Urol Int. 2007;78(4):323–7.CrossRef Lee JS, Chung BH. Transrectal ultrasound versus magnetic resonance imaging in the estimation of prostate volume as compared with radical prostatectomy specimens. Urol Int. 2007;78(4):323–7.CrossRef
5.
go back to reference MacMahon PJ, Kennedy AM, Murphy DT, Maher M, McNicholas MM. Modified prostate volume algorithm improves transrectal US volume estimation in men presenting for prostate brachytherapy. Radiology. 2009;250(1):273–80.CrossRef MacMahon PJ, Kennedy AM, Murphy DT, Maher M, McNicholas MM. Modified prostate volume algorithm improves transrectal US volume estimation in men presenting for prostate brachytherapy. Radiology. 2009;250(1):273–80.CrossRef
6.
go back to reference Rodriguez E Jr, Skarecky D, Narula N, Ahlering TE. Prostate volume estimation using the ellipsoid formula consistently underestimates actual gland size. J Urol. 2008;179(2):501–3.CrossRef Rodriguez E Jr, Skarecky D, Narula N, Ahlering TE. Prostate volume estimation using the ellipsoid formula consistently underestimates actual gland size. J Urol. 2008;179(2):501–3.CrossRef
7.
go back to reference Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol 2016;40:244–52.PubMed Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA. The 2014 International Society of Urological Pathology (ISUP) consensus conference on Gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am J Surg Pathol 2016;40:244–52.PubMed
8.
go back to reference Giavarina D. Understanding bland Altman analysis. Biochem Med (Zagreb). 2015;25(2):141–51.CrossRef Giavarina D. Understanding bland Altman analysis. Biochem Med (Zagreb). 2015;25(2):141–51.CrossRef
9.
go back to reference Schned AR, Wheeler KJ, Hodorowski CA, Heaney JA, Ernstoff MS, Amdur RJ, Harris RD. Tissue-shrinkage correction factor in the calculation of prostate cancer volume. Am J Surg Pathol. 1996;20(12):1501–6.CrossRef Schned AR, Wheeler KJ, Hodorowski CA, Heaney JA, Ernstoff MS, Amdur RJ, Harris RD. Tissue-shrinkage correction factor in the calculation of prostate cancer volume. Am J Surg Pathol. 1996;20(12):1501–6.CrossRef
10.
go back to reference Paterson NR, Lavallee LT, Nguyen LN, Witiuk K, Ross J, Mallick R, Shabana W, MacDonald B, Scheida N, Fergusson D, et al. Prostate volume estimations using magnetic resonance imaging and transrectal ultrasound compared to radical prostatectomy specimens. Can Urol Assoc J. 2016;10(7–8):264–8.CrossRef Paterson NR, Lavallee LT, Nguyen LN, Witiuk K, Ross J, Mallick R, Shabana W, MacDonald B, Scheida N, Fergusson D, et al. Prostate volume estimations using magnetic resonance imaging and transrectal ultrasound compared to radical prostatectomy specimens. Can Urol Assoc J. 2016;10(7–8):264–8.CrossRef
11.
go back to reference Sech S, Montoya J, Girman CJ, Rhodes T, Roehrborn CG. Interexaminer reliability of transrectal ultrasound for estimating prostate volume. J Urol. 2001;166(1):125–9.CrossRef Sech S, Montoya J, Girman CJ, Rhodes T, Roehrborn CG. Interexaminer reliability of transrectal ultrasound for estimating prostate volume. J Urol. 2001;166(1):125–9.CrossRef
Metadata
Title
Improving ultrasound-based prostate volume estimation
Authors
Saro Aprikian
Murilo Luz
Fadi Brimo
Eleonora Scarlata
Lucie Hamel
Fabio L. Cury
Simon Tanguay
Armen G. Aprikian
Wassim Kassouf
Simone Chevalier
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2019
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-019-0492-2

Other articles of this Issue 1/2019

BMC Urology 1/2019 Go to the issue