Skip to main content
Top
Published in: BMC Urology 1/2016

Open Access 01-12-2016 | Research article

A positive Real-Time Elastography (RTE) combined with a Prostate Cancer Gene 3 (PCA3) score above 35 convey a high probability of intermediate- or high-risk prostate cancer in patient admitted for primary prostate biopsy

Authors: Yngve Nygård, Svein A. Haukaas, Ole J. Halvorsen, Karsten Gravdal, Jannicke Frugård, Lars A. Akslen, Christian Beisland

Published in: BMC Urology | Issue 1/2016

Login to get access

Abstract

Background

The standard of care in patients with suspected prostate cancer (PCa) is systematic prostate biopsies. This approach leads to unnecessary biopsies in patients without PCa and also to the detection of clinical insignificant PCa. Better tools are wanted. We have evaluated the performance of real-time elastography (RTE) combined with prostate cancer gene 3 (PCA3) in an initial biopsy setting with the goal of better identifying patients in need of prostate biopsies.

Methods

127 patients were included in this study; three were excluded because of not measureable PCA3 score leading to 124 evaluable patients. A cut-off value of 35 was used for PCA3. All patients were examined with a Hitachi Preirus with an endfire probe for RTE, a maximum of five targeted biopsies were obtained from suspicious lesions detected by RTE. All patients then had a 10-core systematic biopsy performed by another urologist unaware of the RTE results. The study includes follow-up data for a minimum of three years; all available histopathological data are included in the analysis.

Results

There was a significant difference in PCA3 score: 26.6 for benign disease, 73.6 for cancer patients (p < 0.001). 70 patients (56 %) were diagnosed with prostate cancer in the study period, 21 (30 %) low-risk, 32 (46 %) intermediate-risk and 17 (24 %) high-risk. RTE and PCA3 were significant markers for predicting intermediate- and high-risk PCa (p = 0.001). The combination of RTE and PCA3 had a sensitivity of 96 % and a negative predictive value (NPV) of 90 % for the group of intermediate- and high-risk PCa together and a NPV for high-risk PCa of 100 %. If both parameters are positive there is a high probability of detecting intermediate- or high-risk PCa, if both parameters are negative there is only a small chance of missing prostate cancer with documented treatment benefit.

Conclusions

RTE and PCA3 may be used as pre-biopsy examinations to reduce the number of prostate biopsies.
Literature
1.
go back to reference Ilic D, Neuberger MM, Djulbegovic M, et al. Screening for prostate cancer. Cochrane Database Syst Rev. 2013;1:CD004720. Ilic D, Neuberger MM, Djulbegovic M, et al. Screening for prostate cancer. Cochrane Database Syst Rev. 2013;1:CD004720.
2.
go back to reference Chou R, Croswell JM, Dana T, et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155:762–71.CrossRefPubMed Chou R, Croswell JM, Dana T, et al. Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med. 2011;155:762–71.CrossRefPubMed
3.
go back to reference Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 2014;384:2027–35.CrossRefPubMedPubMedCentral Schroder FH, Hugosson J, Roobol MJ, et al. Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet. 2014;384:2027–35.CrossRefPubMedPubMedCentral
4.
go back to reference Carignan A, Roussy JF, Lapointe V, et al. Increasing risk of infectious complications after transrectal ultrasound-guided prostate biopsies: time to reassess antimicrobial prophylaxis? Eur Urol. 2012;62:453–9.CrossRefPubMed Carignan A, Roussy JF, Lapointe V, et al. Increasing risk of infectious complications after transrectal ultrasound-guided prostate biopsies: time to reassess antimicrobial prophylaxis? Eur Urol. 2012;62:453–9.CrossRefPubMed
5.
go back to reference Loeb S, Vellekoop A, Ahmed HU, et al. Systematic review of complications of prostate biopsy. Eur Urol. 2013;64:876–92.CrossRefPubMed Loeb S, Vellekoop A, Ahmed HU, et al. Systematic review of complications of prostate biopsy. Eur Urol. 2013;64:876–92.CrossRefPubMed
6.
go back to reference Moyer VA. Force USPST Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157:120–34.CrossRefPubMed Moyer VA. Force USPST Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157:120–34.CrossRefPubMed
7.
go back to reference Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65:124–37.CrossRefPubMed Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. part 1: screening, diagnosis, and local treatment with curative intent-update 2013. Eur Urol. 2014;65:124–37.CrossRefPubMed
8.
go back to reference Hansen J, Auprich M, Ahyai SA, et al. Initial prostate biopsy: development and internal validation of a biopsy-specific nomogram based on the prostate cancer antigen 3 assay. Eur Urol. 2013;63:201–9.CrossRefPubMed Hansen J, Auprich M, Ahyai SA, et al. Initial prostate biopsy: development and internal validation of a biopsy-specific nomogram based on the prostate cancer antigen 3 assay. Eur Urol. 2013;63:201–9.CrossRefPubMed
9.
go back to reference Nygard Y, Haukaas SA, Eide GE, et al. Prostate cancer antigen-3 (PCA3) and PCA3-based nomograms in the diagnosis of prostate cancer: an external validation of Hansen's nomogram on a Norwegian cohort. Scand J Urol. 2015;49:8–15.CrossRefPubMed Nygard Y, Haukaas SA, Eide GE, et al. Prostate cancer antigen-3 (PCA3) and PCA3-based nomograms in the diagnosis of prostate cancer: an external validation of Hansen's nomogram on a Norwegian cohort. Scand J Urol. 2015;49:8–15.CrossRefPubMed
10.
go back to reference Haas GP, Delongchamps NB, Jones RF, et al. Needle biopsies on autopsy prostates: sensitivity of cancer detection based on true prevalence. J Natl Cancer Inst. 2007;99:1484–9.CrossRefPubMed Haas GP, Delongchamps NB, Jones RF, et al. Needle biopsies on autopsy prostates: sensitivity of cancer detection based on true prevalence. J Natl Cancer Inst. 2007;99:1484–9.CrossRefPubMed
11.
go back to reference Walz J, Marcy M, Pianna JT, et al. Identification of the prostate cancer index lesion by real-time elastography: considerations for focal therapy of prostate cancer. World J Urol. 2011;29:589–94.CrossRefPubMed Walz J, Marcy M, Pianna JT, et al. Identification of the prostate cancer index lesion by real-time elastography: considerations for focal therapy of prostate cancer. World J Urol. 2011;29:589–94.CrossRefPubMed
12.
go back to reference Rud E, Klotz D, Rennesund K, et al. Detection of the index tumour and tumour volume in prostate cancer using T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) alone. BJU Int. 2014;114:E32–42.CrossRefPubMed Rud E, Klotz D, Rennesund K, et al. Detection of the index tumour and tumour volume in prostate cancer using T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) alone. BJU Int. 2014;114:E32–42.CrossRefPubMed
13.
go back to reference Nygard Y, Haukaas SA, Halvorsen OJ, et al. A positive real-time elastography is an independent marker for detection of high-risk prostate cancers in the primary biopsy setting. BJU Int. 2014;113:E90–7.CrossRefPubMed Nygard Y, Haukaas SA, Halvorsen OJ, et al. A positive real-time elastography is an independent marker for detection of high-risk prostate cancers in the primary biopsy setting. BJU Int. 2014;113:E90–7.CrossRefPubMed
14.
go back to reference Salomon G, Drews N, Autier P, et al. Incremental detection rate of prostate cancer by real-time elastography targeted biopsies in combination with a conventional 10-core biopsy in 1024 consecutive patients. BJU Int. 2014;113:548–53.CrossRefPubMed Salomon G, Drews N, Autier P, et al. Incremental detection rate of prostate cancer by real-time elastography targeted biopsies in combination with a conventional 10-core biopsy in 1024 consecutive patients. BJU Int. 2014;113:548–53.CrossRefPubMed
15.
go back to reference Filson CP, Natarajan S, Margolis DJ, et al. Prostate cancer detection with magnetic resonance-ultrasound fusion biopsy: The role of systematic and targeted biopsies Cancer 2016 Filson CP, Natarajan S, Margolis DJ, et al. Prostate cancer detection with magnetic resonance-ultrasound fusion biopsy: The role of systematic and targeted biopsies Cancer 2016
16.
go back to reference Nygard Y, Haukaas SA, Waage JE, et al. Combination of real-time elastography and urine prostate cancer gene 3 (PCA3) detects more than 97% of significant prostate cancers. Scand J Urol. 2013;47:211–6.CrossRefPubMed Nygard Y, Haukaas SA, Waage JE, et al. Combination of real-time elastography and urine prostate cancer gene 3 (PCA3) detects more than 97% of significant prostate cancers. Scand J Urol. 2013;47:211–6.CrossRefPubMed
17.
go back to reference Brock M, Loppenberg B, Roghmann F, et al. Impact of real-time elastography on magnetic resonance imaging/ultrasound fusion guided biopsy in patients with prior negative prostate biopsies. J Urol. 2015;193:1191–7.CrossRefPubMed Brock M, Loppenberg B, Roghmann F, et al. Impact of real-time elastography on magnetic resonance imaging/ultrasound fusion guided biopsy in patients with prior negative prostate biopsies. J Urol. 2015;193:1191–7.CrossRefPubMed
18.
go back to reference Porpiglia F, Russo F, Manfredi M, et al. The roles of multiparametric magnetic resonance imaging, PCA3 and prostate health index-which is the best predictor of prostate cancer after a negative biopsy? J Urol. 2014;192:60–6.CrossRefPubMed Porpiglia F, Russo F, Manfredi M, et al. The roles of multiparametric magnetic resonance imaging, PCA3 and prostate health index-which is the best predictor of prostate cancer after a negative biopsy? J Urol. 2014;192:60–6.CrossRefPubMed
19.
20.
go back to reference Ruffion A, Devonec M, Champetier D, et al. PCA3 and PCA3-based nomograms improve diagnostic accuracy in patients undergoing first prostate biopsy. Int J Mol Sci. 2013;14:17767–80.CrossRefPubMedPubMedCentral Ruffion A, Devonec M, Champetier D, et al. PCA3 and PCA3-based nomograms improve diagnostic accuracy in patients undergoing first prostate biopsy. Int J Mol Sci. 2013;14:17767–80.CrossRefPubMedPubMedCentral
21.
go back to reference Aigner F, Pallwein L, Junker D, et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol. 2010;184:913–7.CrossRefPubMed Aigner F, Pallwein L, Junker D, et al. Value of real-time elastography targeted biopsy for prostate cancer detection in men with prostate specific antigen 1.25 ng/ml or greater and 4.00 ng/ml or less. J Urol. 2010;184:913–7.CrossRefPubMed
22.
go back to reference Brock M, von Bodman C, Palisaar RJ, et al. The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients. J Urol. 2012;187:2039–43.CrossRefPubMed Brock M, von Bodman C, Palisaar RJ, et al. The impact of real-time elastography guiding a systematic prostate biopsy to improve cancer detection rate: a prospective study of 353 patients. J Urol. 2012;187:2039–43.CrossRefPubMed
23.
go back to reference Heinzelbecker J, Weiss C, Pelzer AE A learning curve assessment of real-time sonoelastography of the prostate World J Urol 2012 Heinzelbecker J, Weiss C, Pelzer AE A learning curve assessment of real-time sonoelastography of the prostate World J Urol 2012
Metadata
Title
A positive Real-Time Elastography (RTE) combined with a Prostate Cancer Gene 3 (PCA3) score above 35 convey a high probability of intermediate- or high-risk prostate cancer in patient admitted for primary prostate biopsy
Authors
Yngve Nygård
Svein A. Haukaas
Ole J. Halvorsen
Karsten Gravdal
Jannicke Frugård
Lars A. Akslen
Christian Beisland
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Urology / Issue 1/2016
Electronic ISSN: 1471-2490
DOI
https://doi.org/10.1186/s12894-016-0159-1

Other articles of this Issue 1/2016

BMC Urology 1/2016 Go to the issue