Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

01-12-2020 | Research article

Biomechanical changes of degenerated adjacent segment and intact lumbar spine after lumbosacral topping-off surgery: a three-dimensional finite element analysis

Authors: Liangliang Cao, Yumei Liu, Wei Mei, Jianguang Xu, Shi Zhan

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Previous studies have revealed positive effect of Topping-off technique on upper adjacent segment after fusion surgery, while for the cases with fusion surgery on L5-S1 segment, owning maximal range of motion, and preexisting degenerated upper adjacent disc, it is necessary to clarify the superiority of Topping-ff technique and the effect exerted on the lumbar spine.

Methods

A young healthy male volunteer was selected for thin-slice CT scanning. Then the image information was imported into the computer to establish the whole lumbar spine model as the health model. The medium degeneration model of intervertebral disc was established by changing the material properties of L4-S1 disc on the basis of the health model, and the fusion model and Topping-off model were respectively established on the basis of the degenerated model. The variation trend of ROM of L2-L5 and the stress changes of L4-L5 intervertebral disc, nucleus pulposus and facet joints were calculated respectively.

Results

The L4-L5 ROM of fusion model increased significantly but the ROM of L2-L3 and L3-L4 segments did not change significantly. Compared with the degenerated model, L4-L5 activity of the Topping-off model decreased, and ROM of the L2-L3 and L3-L4 increased to some extent in the flexion and extension positions. The stress on the disc, nucleus pulposus and facet joint of the fusion model L4-L5 increased in four positions of flexion, extension, rotation and bending compared with the degenerated model, while the fiber stress on the Topping-off model decreased significantly in all four positions.

Conclusion

Topping-off technology can decrease the stress and ROM of the adjacent upper degenerated segment, and increase the ROM of other upper segments, thereby protecting the degenerated upper adjacent segments and compensating the lumbar spine mobility.
Appendix
Available only for authorised users
Literature
1.
go back to reference Etebar S, Cahill DW. Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg. 1999;90(2 Suppl):163–9. Etebar S, Cahill DW. Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg. 1999;90(2 Suppl):163–9.
2.
go back to reference Yang JY, Lee JK, Song HS. The impact of adjacent segment degeneration on the clinical outcome after lumbar spinal fusion. Spine. 2008;33(5):503–7.CrossRef Yang JY, Lee JK, Song HS. The impact of adjacent segment degeneration on the clinical outcome after lumbar spinal fusion. Spine. 2008;33(5):503–7.CrossRef
3.
go back to reference Mannion AF. ISSLS prize winner: long-term follow-up suggests spinal fusion is associated with increased adjacent segment disc degeneration but without influence on clinical outcome: results of a combined follow-up from 4 randomized controlled trials. Spine. 2014;39(17):1373–83.CrossRef Mannion AF. ISSLS prize winner: long-term follow-up suggests spinal fusion is associated with increased adjacent segment disc degeneration but without influence on clinical outcome: results of a combined follow-up from 4 randomized controlled trials. Spine. 2014;39(17):1373–83.CrossRef
4.
go back to reference Lee YC, Zotti MGT, Osti OL. Operative management of lumbar degenerative disc disease. Asian Spine J. 2016;10(4):801.CrossRef Lee YC, Zotti MGT, Osti OL. Operative management of lumbar degenerative disc disease. Asian Spine J. 2016;10(4):801.CrossRef
5.
go back to reference Gala RJ, Russo GS, Whang PG. Interspinous implants to treat spinal stenosis. Curr Rev Musculoskelet Med. 2017;10(2):182–8.CrossRef Gala RJ, Russo GS, Whang PG. Interspinous implants to treat spinal stenosis. Curr Rev Musculoskelet Med. 2017;10(2):182–8.CrossRef
6.
go back to reference Landi A. Interspinous posterior devices: what is the real surgical indication? World J Clin Cases. 2014;2(9):402–8.CrossRef Landi A. Interspinous posterior devices: what is the real surgical indication? World J Clin Cases. 2014;2(9):402–8.CrossRef
7.
go back to reference Chen XL, et al. Interspinous dynamic stabilization adjacent to fusion versus double-segment fusion for treatment of lumbar degenerative disease with a minimum follow-up of three years. Int Orthop. 2016;40(6):1275–83.CrossRef Chen XL, et al. Interspinous dynamic stabilization adjacent to fusion versus double-segment fusion for treatment of lumbar degenerative disease with a minimum follow-up of three years. Int Orthop. 2016;40(6):1275–83.CrossRef
8.
go back to reference Faizan A. Biomechanical rationale of ossification of the secondary ossification center on apophyseal bony ring fracture: a biomechanical study. Clin Biomech (Bristol, Avon). 2007;22(10):1063–7.CrossRef Faizan A. Biomechanical rationale of ossification of the secondary ossification center on apophyseal bony ring fracture: a biomechanical study. Clin Biomech (Bristol, Avon). 2007;22(10):1063–7.CrossRef
9.
go back to reference Sylvestre PL, Villemure I, Aubin CE. Finite element modeling of the growth plate in a detailed spine model. Med Biol Eng Comput. 2007;45(10):977–88.CrossRef Sylvestre PL, Villemure I, Aubin CE. Finite element modeling of the growth plate in a detailed spine model. Med Biol Eng Comput. 2007;45(10):977–88.CrossRef
10.
go back to reference Zhu Z, Liu C, Wang K. Topping-off technique prevents aggravation of degeneration of adjacent segment fusion revealed by retrospective and finite element biomechanical analysis. J Orthop Surg Res. 2015;10:10.CrossRef Zhu Z, Liu C, Wang K. Topping-off technique prevents aggravation of degeneration of adjacent segment fusion revealed by retrospective and finite element biomechanical analysis. J Orthop Surg Res. 2015;10:10.CrossRef
11.
go back to reference Polikeit A, Nolte L, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine. 2003;28(10):991–6.PubMed Polikeit A, Nolte L, Ferguson SJ. The effect of cement augmentation on the load transfer in an osteoporotic functional spinal unit: finite-element analysis. Spine. 2003;28(10):991–6.PubMed
12.
go back to reference Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK. Contribution of disc degeneration to osteophyte formation in the cervical spine a biomechanical investigation. J Orthop Res. 2001;19(5):977–84.CrossRef Kumaresan S, Yoganandan N, Pintar FA, Maiman DJ, Goel VK. Contribution of disc degeneration to osteophyte formation in the cervical spine a biomechanical investigation. J Orthop Res. 2001;19(5):977–84.CrossRef
13.
go back to reference Byun DH, Shin DA, Kim JM, Kim SH, Kim HI. Finite element analysis of the biomechanical effect of coflex™ on the lumbar spine. Korean J Spine. 2012;9(3):131–6.CrossRef Byun DH, Shin DA, Kim JM, Kim SH, Kim HI. Finite element analysis of the biomechanical effect of coflex™ on the lumbar spine. Korean J Spine. 2012;9(3):131–6.CrossRef
14.
go back to reference Heth JA, Hitchon P, Goel VK, Rogge TN, Drake JS, Torner JC. A biomechanical comparison between anterior and transverse interbody fusion cages. Spine. 2001;26(12):E261–7.CrossRef Heth JA, Hitchon P, Goel VK, Rogge TN, Drake JS, Torner JC. A biomechanical comparison between anterior and transverse interbody fusion cages. Spine. 2001;26(12):E261–7.CrossRef
15.
go back to reference Li D, Hai Y, Meng X. Topping-off surgery vs posterior lumbar interbody fusion for degenerative lumbar disease: a comparative study of clinical efficacy and adjacent segment degeneration. J Orthop Surg Res. 2019;14(1):197.CrossRef Li D, Hai Y, Meng X. Topping-off surgery vs posterior lumbar interbody fusion for degenerative lumbar disease: a comparative study of clinical efficacy and adjacent segment degeneration. J Orthop Surg Res. 2019;14(1):197.CrossRef
16.
go back to reference Liu C, Kamara A, Yan Y. Investigation into the biomechanics of lumbar spine micro-dynamic pedicle screw. BMC Musculoskelet Disord. 2018;19(1):231.CrossRef Liu C, Kamara A, Yan Y. Investigation into the biomechanics of lumbar spine micro-dynamic pedicle screw. BMC Musculoskelet Disord. 2018;19(1):231.CrossRef
17.
go back to reference Yamamoto I, Panjabi M, Crisco T, Oxland T. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine. 1989;14(11):1256–60.CrossRef Yamamoto I, Panjabi M, Crisco T, Oxland T. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine. 1989;14(11):1256–60.CrossRef
18.
go back to reference Sobottke R, et al. Interspinous implants (X stop, Wallis, Diam) for the treatment of LSS: is there a correlation between radiological parameters and clinical outcome? Eur Spine J. 2009;18(10):1494–503.CrossRef Sobottke R, et al. Interspinous implants (X stop, Wallis, Diam) for the treatment of LSS: is there a correlation between radiological parameters and clinical outcome? Eur Spine J. 2009;18(10):1494–503.CrossRef
19.
go back to reference Liang J, Dong Y, Zhao H. Risk factors for predicting symptomatic adjacent segment degeneration requiring surgery in patients after posterior lumbar fusion. J Orthop Surg Res. 2014;9:97.CrossRef Liang J, Dong Y, Zhao H. Risk factors for predicting symptomatic adjacent segment degeneration requiring surgery in patients after posterior lumbar fusion. J Orthop Surg Res. 2014;9:97.CrossRef
20.
go back to reference Herren C, Sobottke R, Pishnamaz M, Scheyerer MJ, Bredow J, Westermann L, Berger EM, Oikonomidis S, Eysel P, Siewe J. The use of the DTO hybrid dynamic device: a clinical outcome- and radiological-based prospective clinical trial. BMC Musculoskelet Disord. 2018;19(1):199.CrossRef Herren C, Sobottke R, Pishnamaz M, Scheyerer MJ, Bredow J, Westermann L, Berger EM, Oikonomidis S, Eysel P, Siewe J. The use of the DTO hybrid dynamic device: a clinical outcome- and radiological-based prospective clinical trial. BMC Musculoskelet Disord. 2018;19(1):199.CrossRef
21.
go back to reference Pfirrmann CW, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26(17):1873–8.CrossRef Pfirrmann CW, et al. Magnetic resonance classification of lumbar intervertebral disc degeneration. Spine. 2001;26(17):1873–8.CrossRef
22.
go back to reference Choi J, Kim S, Shin DA. Biomechanical comparison of spinal fusion methods using Interspinous process compressor and pedicle screw fixation system based on finite element method. J Korean Neurosurg Soc. 2016;59(2):91–7.CrossRef Choi J, Kim S, Shin DA. Biomechanical comparison of spinal fusion methods using Interspinous process compressor and pedicle screw fixation system based on finite element method. J Korean Neurosurg Soc. 2016;59(2):91–7.CrossRef
23.
go back to reference Liu HY, Zhou J, Wang B, Wang HM, Jin ZH, Zhu ZQ, Miao KN. Comparison of Topping-off and posterior lumbar interbody fusion surgery in lumbar degenerative disease: a retrospective study. Chin Med J. 2012;125(22):3942–6.PubMed Liu HY, Zhou J, Wang B, Wang HM, Jin ZH, Zhu ZQ, Miao KN. Comparison of Topping-off and posterior lumbar interbody fusion surgery in lumbar degenerative disease: a retrospective study. Chin Med J. 2012;125(22):3942–6.PubMed
24.
go back to reference Murakami H, Yoon TS, Attallah-Wasif ES, Kraiwattanapong C, Kikkawa I, Hutton WC. Quantitative differences in intervertebral disc-matrix composition with age-related degeneration. Med Biol Eng Comput. 2010;48(5):469–74.CrossRef Murakami H, Yoon TS, Attallah-Wasif ES, Kraiwattanapong C, Kikkawa I, Hutton WC. Quantitative differences in intervertebral disc-matrix composition with age-related degeneration. Med Biol Eng Comput. 2010;48(5):469–74.CrossRef
25.
go back to reference Hirsch C. Studies on the pathology of low back pain. J Bone Joint Surg (Br). 1959;41-B(2):237–43.CrossRef Hirsch C. Studies on the pathology of low back pain. J Bone Joint Surg (Br). 1959;41-B(2):237–43.CrossRef
26.
go back to reference Johannessen W, Elliott DM. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine (Phila Pa 1976). 2005;30(24):E724–9.CrossRef Johannessen W, Elliott DM. Effects of degeneration on the biphasic material properties of human nucleus pulposus in confined compression. Spine (Phila Pa 1976). 2005;30(24):E724–9.CrossRef
27.
go back to reference Gu WY, et al. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Ann Biomed Eng. 2004;32(12):1710–7.CrossRef Gu WY, et al. Diffusivity of ions in agarose gels and intervertebral disc: effect of porosity. Ann Biomed Eng. 2004;32(12):1710–7.CrossRef
28.
go back to reference Gu W, et al. Simulation of the progression of intervertebral disc degeneration due to decreased nutritional supply. Spine (Phila Pa 1976). 2014;39(24):E1411–7.CrossRef Gu W, et al. Simulation of the progression of intervertebral disc degeneration due to decreased nutritional supply. Spine (Phila Pa 1976). 2014;39(24):E1411–7.CrossRef
29.
go back to reference Schmidt H, et al. The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis. Clin Biomech (Bristol, Avon). 2008;23(3):270–8.CrossRef Schmidt H, et al. The relation between the instantaneous center of rotation and facet joint forces - A finite element analysis. Clin Biomech (Bristol, Avon). 2008;23(3):270–8.CrossRef
30.
go back to reference Yan Z, et al. Static compression induces ECM remodeling and integrin alpha2beta1 expression and signaling in a rat tail caudal intervertebral disc degeneration model. Spine (Phila Pa 1976). 2017;42(8):E448–58.CrossRef Yan Z, et al. Static compression induces ECM remodeling and integrin alpha2beta1 expression and signaling in a rat tail caudal intervertebral disc degeneration model. Spine (Phila Pa 1976). 2017;42(8):E448–58.CrossRef
31.
go back to reference Chan SCW, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading on the intervertebral disc. Eur Spine J. 2011;20(11):1796–812.CrossRef Chan SCW, Ferguson SJ, Gantenbein-Ritter B. The effects of dynamic loading on the intervertebral disc. Eur Spine J. 2011;20(11):1796–812.CrossRef
32.
go back to reference Bergknut N, et al. Intervertebral disc degeneration in the dog. Part 1: anatomy and physiology of the intervertebral disc and characteristics of intervertebral disc degeneration. Vet J. 2013;195(3):282–91.CrossRef Bergknut N, et al. Intervertebral disc degeneration in the dog. Part 1: anatomy and physiology of the intervertebral disc and characteristics of intervertebral disc degeneration. Vet J. 2013;195(3):282–91.CrossRef
33.
go back to reference Masharawi Y, Rothschild B, Dar G, Peleg S, Robinson D, Been E, Hershkovitz I. Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis. Spine. 2004;29(15):1755–63.CrossRef Masharawi Y, Rothschild B, Dar G, Peleg S, Robinson D, Been E, Hershkovitz I. Facet orientation in the thoracolumbar spine: three-dimensional anatomic and biomechanical analysis. Spine. 2004;29(15):1755–63.CrossRef
34.
go back to reference Kozanek M, et al. Range of motion and orientation of the lumbar facet joints in vivo. Spine. 2009;34(19):689–96.CrossRef Kozanek M, et al. Range of motion and orientation of the lumbar facet joints in vivo. Spine. 2009;34(19):689–96.CrossRef
35.
go back to reference Jones-Quaidoo SM, Djurasovic M, Owens RK 2nd, Carreon LY. Superior articulating facet violation: percutaneous versus open techniques. J Neurosurg Spine. 2013;18(6):593–7.CrossRef Jones-Quaidoo SM, Djurasovic M, Owens RK 2nd, Carreon LY. Superior articulating facet violation: percutaneous versus open techniques. J Neurosurg Spine. 2013;18(6):593–7.CrossRef
36.
go back to reference Umehara S, Zindrick MR, Patwardhan AG, Havey RM, Vrbos LA, Knight GW, Miyano S, Kirincic M, Kaneda K, Lorenz MA. The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine. 2000;25(13):1617–24.CrossRef Umehara S, Zindrick MR, Patwardhan AG, Havey RM, Vrbos LA, Knight GW, Miyano S, Kirincic M, Kaneda K, Lorenz MA. The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine. 2000;25(13):1617–24.CrossRef
37.
go back to reference Schlegel JD, Smith JA, Schleusener RL. Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine. 1996;21(8):970–81.CrossRef Schlegel JD, Smith JA, Schleusener RL. Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine. 1996;21(8):970–81.CrossRef
Metadata
Title
Biomechanical changes of degenerated adjacent segment and intact lumbar spine after lumbosacral topping-off surgery: a three-dimensional finite element analysis
Authors
Liangliang Cao
Yumei Liu
Wei Mei
Jianguang Xu
Shi Zhan
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-3128-5

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue