Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Research article

Applicability of augmented reality in orthopedic surgery – A systematic review

Authors: Lukas Jud, Javad Fotouhi, Octavian Andronic, Alexander Aichmair, Greg Osgood, Nassir Navab, Mazda Farshad

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Computer-assisted solutions are changing surgical practice continuously. One of the most disruptive technologies among the computer-integrated surgical techniques is Augmented Reality (AR). While Augmented Reality is increasingly used in several medical specialties, its potential benefit in orthopedic surgery is not yet clear. The purpose of this article is to provide a systematic review of the current state of knowledge and the applicability of AR in orthopedic surgery.

Methods

A systematic review of the current literature was performed to find the state of knowledge and applicability of AR in Orthopedic surgery. A systematic search of the following three databases was performed: “PubMed”, “Cochrane Library” and “Web of Science”. The systematic review followed the Preferred Reporting Items on Systematic Reviews and Meta-analysis (PRISMA) guidelines and it has been published and registered in the international prospective register of systematic reviews (PROSPERO).

Results

31 studies and reports are included and classified into the following categories: Instrument / Implant Placement, Osteotomies, Tumor Surgery, Trauma, and Surgical Training and Education. Quality assessment could be performed in 18 studies. Among the clinical studies, there were six case series with an average score of 90% and one case report, which scored 81% according to the Joanna Briggs Institute Critical Appraisal Checklist (JBI CAC). The 11 cadaveric studies scored 81% according to the QUACS scale (Quality Appraisal for Cadaveric Studies).

Conclusion

This manuscript provides 1) a summary of the current state of knowledge and research of Augmented Reality in orthopedic surgery presented in the literature, and 2) a discussion by the authors presenting the key remarks required for seamless integration of Augmented Reality in the future surgical practice.

Trial registration

PROSPERO registration number: CRD42019128569.
Appendix
Available only for authorised users
Literature
1.
go back to reference Anderson KC, Buehler KC, Markel DC. Computer assisted navigation in total knee arthroplasty: comparison with conventional methods. J Arthroplast. 2005;20:132–8.CrossRef Anderson KC, Buehler KC, Markel DC. Computer assisted navigation in total knee arthroplasty: comparison with conventional methods. J Arthroplast. 2005;20:132–8.CrossRef
2.
go back to reference Bathis H, Perlick L, Tingart M, Luring C, Zurakowski D, Grifka J. Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J Bone Joint Surg Br. 2004;86:682–7.PubMedCrossRef Bathis H, Perlick L, Tingart M, Luring C, Zurakowski D, Grifka J. Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J Bone Joint Surg Br. 2004;86:682–7.PubMedCrossRef
3.
go back to reference Chin PL, Yang KY, Yeo SJ, Lo NN. Randomized control trial comparing radiographic total knee arthroplasty implant placement using computer navigation versus conventional technique. J Arthroplast. 2005;20:618–26.CrossRef Chin PL, Yang KY, Yeo SJ, Lo NN. Randomized control trial comparing radiographic total knee arthroplasty implant placement using computer navigation versus conventional technique. J Arthroplast. 2005;20:618–26.CrossRef
4.
go back to reference Hoffart HE, Langenstein E, Vasak N. A prospective study comparing the functional outcome of computer-assisted and conventional total knee replacement. J Bone Joint Surg Br. 2012;94:194–9.PubMedCrossRef Hoffart HE, Langenstein E, Vasak N. A prospective study comparing the functional outcome of computer-assisted and conventional total knee replacement. J Bone Joint Surg Br. 2012;94:194–9.PubMedCrossRef
5.
go back to reference Sugano N, Nishii T, Miki H, Yoshikawa H, Sato Y, Tamura S. Mid-term results of cementless total hip replacement using a ceramic-on-ceramic bearing with and without computer navigation. J Bone Joint Surg Br. 2007;89:455–60.PubMedCrossRef Sugano N, Nishii T, Miki H, Yoshikawa H, Sato Y, Tamura S. Mid-term results of cementless total hip replacement using a ceramic-on-ceramic bearing with and without computer navigation. J Bone Joint Surg Br. 2007;89:455–60.PubMedCrossRef
6.
go back to reference Synder M, Altimimi MA, Borowski A, Sibinski M, Drobniewski M. Evaluation of outcomes of Total knee replacement with and without a navigation system. Ortop Traumatol Rehabil. 2016;18:251–61.PubMedCrossRef Synder M, Altimimi MA, Borowski A, Sibinski M, Drobniewski M. Evaluation of outcomes of Total knee replacement with and without a navigation system. Ortop Traumatol Rehabil. 2016;18:251–61.PubMedCrossRef
7.
go back to reference Conditt MA, Roche MW. Minimally invasive robotic-arm-guided unicompartmental knee arthroplasty. J Bone Joint Surg Am. 2009;91(Suppl 1):63–8.PubMedCrossRef Conditt MA, Roche MW. Minimally invasive robotic-arm-guided unicompartmental knee arthroplasty. J Bone Joint Surg Am. 2009;91(Suppl 1):63–8.PubMedCrossRef
8.
go back to reference Elmallah RK, Cherian JJ, Jauregui JJ, Padden DA, Harwin SF, Mont MA. Robotic-arm assisted surgery in Total hip Arthroplasty. Surg Technol Int. 2015;26:283–8.PubMed Elmallah RK, Cherian JJ, Jauregui JJ, Padden DA, Harwin SF, Mont MA. Robotic-arm assisted surgery in Total hip Arthroplasty. Surg Technol Int. 2015;26:283–8.PubMed
9.
go back to reference Schulz AP, Seide K, Queitsch C, von Haugwitz A, Meiners J, Kienast B, et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot. 2007;3:301–6.PubMedCrossRef Schulz AP, Seide K, Queitsch C, von Haugwitz A, Meiners J, Kienast B, et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures. Int J Med Robot. 2007;3:301–6.PubMedCrossRef
10.
go back to reference Siebert W, Mai S, Kober R, Heeckt PF. Technique and first clinical results of robot-assisted total knee replacement. Knee. 2002;9:173–80.PubMedCrossRef Siebert W, Mai S, Kober R, Heeckt PF. Technique and first clinical results of robot-assisted total knee replacement. Knee. 2002;9:173–80.PubMedCrossRef
11.
go back to reference Azuma RT. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997;6:355–85.CrossRef Azuma RT. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997;6:355–85.CrossRef
12.
go back to reference Wellner P, Mackay W, Gold R. Computer-augmented environments - Back to the real-world. Commun ACM. 1993;36:24–6.CrossRef Wellner P, Mackay W, Gold R. Computer-augmented environments - Back to the real-world. Commun ACM. 1993;36:24–6.CrossRef
13.
go back to reference Zlatanova S (2002) Augmented Reality Technology GISt Report No 17. Zlatanova S (2002) Augmented Reality Technology GISt Report No 17.
14.
go back to reference Wagner D, Langlotz T, Schmalstieg D (2008) Robust and unobtrusive marker tracking on Mobile phones. 7th Ieee international symposium on mixed and augmented reality 2008, proceedings 121-124. Wagner D, Langlotz T, Schmalstieg D (2008) Robust and unobtrusive marker tracking on Mobile phones. 7th Ieee international symposium on mixed and augmented reality 2008, proceedings 121-124.
15.
go back to reference Zhang X., Fronz S., Navab N. (2002) Visual marker detection and decoding in AR systems: a comparative study. In proceedings of the 1st international symposium on mixed and augmented reality (p 97) IEEE computer society. Zhang X., Fronz S., Navab N. (2002) Visual marker detection and decoding in AR systems: a comparative study. In proceedings of the 1st international symposium on mixed and augmented reality (p 97) IEEE computer society.
16.
go back to reference Genc Y, Riedel S, Souvannavong F, Akinlar C, Navab N (2002) Marker-less tracking for AR: A learning-based approach. International symposium on mixed and augmented reality, proceedings;Doi 10.1109/Ismar.2002.1115122295-304. Genc Y, Riedel S, Souvannavong F, Akinlar C, Navab N (2002) Marker-less tracking for AR: A learning-based approach. International symposium on mixed and augmented reality, proceedings;Doi 10.1109/Ismar.2002.1115122295-304.
17.
go back to reference Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V (2016) Augmented reality in neurosurgery: a systematic review. Neurosurg rev;10.1007/s10143-016-0732-9. Meola A, Cutolo F, Carbone M, Cagnazzo F, Ferrari M, Ferrari V (2016) Augmented reality in neurosurgery: a systematic review. Neurosurg rev;10.1007/s10143-016-0732-9.
18.
go back to reference Hallet J, Soler L, Diana M, Mutter D, Baumert TF, Habersetzer F, et al. Trans-thoracic minimally invasive liver resection guided by augmented reality. J Am Coll Surg. 2015;220:e55–60.PubMedCrossRef Hallet J, Soler L, Diana M, Mutter D, Baumert TF, Habersetzer F, et al. Trans-thoracic minimally invasive liver resection guided by augmented reality. J Am Coll Surg. 2015;220:e55–60.PubMedCrossRef
19.
go back to reference Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P. Augmented reality guidance for the resection of missing colorectal liver metastases: an initial experience. World J Surg. 2016;40:419–26.PubMedCrossRef Ntourakis D, Memeo R, Soler L, Marescaux J, Mutter D, Pessaux P. Augmented reality guidance for the resection of missing colorectal liver metastases: an initial experience. World J Surg. 2016;40:419–26.PubMedCrossRef
20.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.PubMedPubMedCentralCrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.PubMedPubMedCentralCrossRef
21.
go back to reference Jud L, Andronic O, Fotouhi J, Aichmair A, Osgood G, Nassir N, et al. (2019) The applicability of augmented reality in orthopaedic surgery: a systematic review PROSPERO CRD42019128569: Jud L, Andronic O, Fotouhi J, Aichmair A, Osgood G, Nassir N, et al. (2019) The applicability of augmented reality in orthopaedic surgery: a systematic review PROSPERO CRD42019128569:
22.
go back to reference Obremskey WT, Pappas N, Attallah-Wasif E, Tornetta P 3rd, Bhandari M. Level of evidence in orthopaedic journals. J Bone Joint Surg Am. 2005;87:2632–8.PubMedCrossRef Obremskey WT, Pappas N, Attallah-Wasif E, Tornetta P 3rd, Bhandari M. Level of evidence in orthopaedic journals. J Bone Joint Surg Am. 2005;87:2632–8.PubMedCrossRef
24.
go back to reference Aromataris E, Fernandez R, Godfrey CM, Holly C, Khalil H, Tungpunkom P. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Int J Evid Based Healthc. 2015;13:132–40.PubMedCrossRef Aromataris E, Fernandez R, Godfrey CM, Holly C, Khalil H, Tungpunkom P. Summarizing systematic reviews: methodological development, conduct and reporting of an umbrella review approach. Int J Evid Based Healthc. 2015;13:132–40.PubMedCrossRef
25.
go back to reference Wilke J, Krause F, Niederer D, Engeroff T, Nurnberger F, Vogt L, et al. Appraising the methodological quality of cadaveric studies: validation of the QUACS scale. J Anat. 2015;226:440–6.PubMedPubMedCentralCrossRef Wilke J, Krause F, Niederer D, Engeroff T, Nurnberger F, Vogt L, et al. Appraising the methodological quality of cadaveric studies: validation of the QUACS scale. J Anat. 2015;226:440–6.PubMedPubMedCentralCrossRef
26.
go back to reference Abe Y, Sato S, Kato K, Hyakumachi T, Yanagibashi Y, Ito M, et al. A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note. J Neurosurg Spine. 2013;19:492–501.PubMedCrossRef Abe Y, Sato S, Kato K, Hyakumachi T, Yanagibashi Y, Ito M, et al. A novel 3D guidance system using augmented reality for percutaneous vertebroplasty: technical note. J Neurosurg Spine. 2013;19:492–501.PubMedCrossRef
27.
go back to reference Elmi-Terander A, Burstrom G, Nachabe R, Skulason H, Pedersen K, Fagerlund M, et al. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: A first in-human prospective cohort study. Spine (Phila Pa 1976). 2019;44:517–25.CrossRef Elmi-Terander A, Burstrom G, Nachabe R, Skulason H, Pedersen K, Fagerlund M, et al. Pedicle screw placement using augmented reality surgical navigation with intraoperative 3D imaging: A first in-human prospective cohort study. Spine (Phila Pa 1976). 2019;44:517–25.CrossRef
28.
go back to reference Ogawa H, Hasegawa S, Tsukada S, Matsubara M. A pilot study of augmented reality technology applied to the Acetabular cup placement during Total hip Arthroplasty. J Arthroplast. 2018;33:1833–7.CrossRef Ogawa H, Hasegawa S, Tsukada S, Matsubara M. A pilot study of augmented reality technology applied to the Acetabular cup placement during Total hip Arthroplasty. J Arthroplast. 2018;33:1833–7.CrossRef
29.
go back to reference Ponce BA, Jennings JK, Clay TB, May MB, Huisingh C, Sheppard ED. Telementoring: use of augmented reality in orthopaedic education: AAOS exhibit selection. J Bone Joint Surg Am. 2014;96:e84.PubMedCrossRef Ponce BA, Jennings JK, Clay TB, May MB, Huisingh C, Sheppard ED. Telementoring: use of augmented reality in orthopaedic education: AAOS exhibit selection. J Bone Joint Surg Am. 2014;96:e84.PubMedCrossRef
30.
go back to reference Ponce BA, Menendez ME, Oladeji LO, Fryberger CT, Dantuluri PK. Emerging technology in surgical education: combining real-time augmented reality and wearable computing devices. Orthopedics. 2014;37:751–7.PubMedCrossRef Ponce BA, Menendez ME, Oladeji LO, Fryberger CT, Dantuluri PK. Emerging technology in surgical education: combining real-time augmented reality and wearable computing devices. Orthopedics. 2014;37:751–7.PubMedCrossRef
31.
go back to reference Shen F, Chen B, Guo Q, Qi Y, Shen Y. Augmented reality patient-specific reconstruction plate design for pelvic and acetabular fracture surgery. Int J Comput Assist Radiol Surg. 2013;8:169–79.PubMedCrossRef Shen F, Chen B, Guo Q, Qi Y, Shen Y. Augmented reality patient-specific reconstruction plate design for pelvic and acetabular fracture surgery. Int J Comput Assist Radiol Surg. 2013;8:169–79.PubMedCrossRef
32.
go back to reference Wu JR, Wang ML, Liu KC, Hu MH, Lee PY. Real-time advanced spinal surgery via visible patient model and augmented reality system. Comput Methods Prog Biomed. 2014;113:869–81.CrossRef Wu JR, Wang ML, Liu KC, Hu MH, Lee PY. Real-time advanced spinal surgery via visible patient model and augmented reality system. Comput Methods Prog Biomed. 2014;113:869–81.CrossRef
33.
go back to reference Cho HS, Park MS, Gupta S, Han I, Kim HS, Choi H, et al. Can augmented reality be helpful in pelvic bone Cancer surgery? An in vitro study. Clin Orthop Relat Res. 2018;476:1719–25.PubMedPubMedCentralCrossRef Cho HS, Park MS, Gupta S, Han I, Kim HS, Choi H, et al. Can augmented reality be helpful in pelvic bone Cancer surgery? An in vitro study. Clin Orthop Relat Res. 2018;476:1719–25.PubMedPubMedCentralCrossRef
34.
go back to reference Cho HS, Park YK, Gupta S, Yoon C, Han I, Kim HS, et al. Augmented reality in bone tumour resection: an experimental study. Bone Joint Res. 2017;6:137–43.PubMedPubMedCentralCrossRef Cho HS, Park YK, Gupta S, Yoon C, Han I, Kim HS, et al. Augmented reality in bone tumour resection: an experimental study. Bone Joint Res. 2017;6:137–43.PubMedPubMedCentralCrossRef
35.
go back to reference Elmi-Terander A, Nachabe R, Skulason H, Pedersen K, Soderman M, Racadio J, et al. Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology. Spine (Phila Pa 1976). 2018;43:1018–23.CrossRef Elmi-Terander A, Nachabe R, Skulason H, Pedersen K, Soderman M, Racadio J, et al. Feasibility and accuracy of thoracolumbar minimally invasive pedicle screw placement with augmented reality navigation technology. Spine (Phila Pa 1976). 2018;43:1018–23.CrossRef
36.
go back to reference Fallavollita P, Brand A, Wang L, Euler E, Thaller P, Navab N, et al. An augmented reality C-arm for intraoperative assessment of the mechanical axis: a preclinical study. Int J Comput Assist Radiol Surg. 2016;11:2111–7.PubMedCrossRef Fallavollita P, Brand A, Wang L, Euler E, Thaller P, Navab N, et al. An augmented reality C-arm for intraoperative assessment of the mechanical axis: a preclinical study. Int J Comput Assist Radiol Surg. 2016;11:2111–7.PubMedCrossRef
37.
go back to reference Fichtinger G, Deguet A, Masamune K, Balogh E, Fischer GS, Mathieu H, et al. Image overlay guidance for needle insertion in CT scanner. IEEE Trans Biomed Eng. 2005;52:1415–24.PubMedCrossRef Fichtinger G, Deguet A, Masamune K, Balogh E, Fischer GS, Mathieu H, et al. Image overlay guidance for needle insertion in CT scanner. IEEE Trans Biomed Eng. 2005;52:1415–24.PubMedCrossRef
38.
go back to reference Fischer GS, Deguet A, Csoma C, Taylor RH, Fayad L, Carrino JA, et al. MRI image overlay: application to arthrography needle insertion. Comput Aided Surg. 2007;12:2–14.PubMedCrossRef Fischer GS, Deguet A, Csoma C, Taylor RH, Fayad L, Carrino JA, et al. MRI image overlay: application to arthrography needle insertion. Comput Aided Surg. 2007;12:2–14.PubMedCrossRef
39.
go back to reference Heining SM, Wiesner S, Euler E, Navab N. Pedicle screw placement under video-augmented flouroscopic control: first clinical application in a cadaver study. Int J Comput Assist Radiol Surg. 2006;1:189–90.CrossRef Heining SM, Wiesner S, Euler E, Navab N. Pedicle screw placement under video-augmented flouroscopic control: first clinical application in a cadaver study. Int J Comput Assist Radiol Surg. 2006;1:189–90.CrossRef
40.
go back to reference Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017;12:2205–15.PubMedCrossRef Ma L, Zhao Z, Chen F, Zhang B, Fu L, Liao H. Augmented reality surgical navigation with ultrasound-assisted registration for pedicle screw placement: a pilot study. Int J Comput Assist Radiol Surg. 2017;12:2205–15.PubMedCrossRef
41.
go back to reference Navab N, Heining SM, Traub J. Camera augmented mobile C-arm (CAMC): calibration, accuracy study, and clinical applications. IEEE Trans Med Imaging. 2010;29:1412–23.PubMedCrossRef Navab N, Heining SM, Traub J. Camera augmented mobile C-arm (CAMC): calibration, accuracy study, and clinical applications. IEEE Trans Med Imaging. 2010;29:1412–23.PubMedCrossRef
42.
go back to reference Wang H, Wang F, Leong AP, Xu L, Chen X, Wang Q. Precision insertion of percutaneous sacroiliac screws using a novel augmented reality-based navigation system: a pilot study. Int Orthop. 2016;40:1941–7.PubMedCrossRef Wang H, Wang F, Leong AP, Xu L, Chen X, Wang Q. Precision insertion of percutaneous sacroiliac screws using a novel augmented reality-based navigation system: a pilot study. Int Orthop. 2016;40:1941–7.PubMedCrossRef
43.
go back to reference Hummel E, Homan RJF, Babic D, Balguid A. Imaging system and method for enabling instrument guidance. Google Patents; 2015. Hummel E, Homan RJF, Babic D, Balguid A. Imaging system and method for enabling instrument guidance. Google Patents; 2015.
44.
go back to reference Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg. 2019;14:525–35.PubMedCrossRef Gibby JT, Swenson SA, Cvetko S, Rao R, Javan R. Head-mounted display augmented reality to guide pedicle screw placement utilizing computed tomography. Int J Comput Assist Radiol Surg. 2019;14:525–35.PubMedCrossRef
45.
go back to reference UT P, Fritz J, Moonjaita C, Ungi T, Flammang A, Carrino JA, et al. MR image overlay guidance: system evaluation for preclinical use. Int J Comput Assist Radiol Surg. 2013;8:365–78.CrossRef UT P, Fritz J, Moonjaita C, Ungi T, Flammang A, Carrino JA, et al. MR image overlay guidance: system evaluation for preclinical use. Int J Comput Assist Radiol Surg. 2013;8:365–78.CrossRef
46.
go back to reference Fischer M, Fuerst B, Lee SC, Fotouhi J, Habert S, Weidert S, et al. Preclinical usability study of multiple augmented reality concepts for K-wire placement. Int J Comput Assist Radiol Surg. 2016;11:1007–14.PubMedCrossRef Fischer M, Fuerst B, Lee SC, Fotouhi J, Habert S, Weidert S, et al. Preclinical usability study of multiple augmented reality concepts for K-wire placement. Int J Comput Assist Radiol Surg. 2016;11:1007–14.PubMedCrossRef
47.
go back to reference Andress S, Johnson A, Unberath M, Winkler AF, Yu K, Fotouhi J, et al. On-the-fly augmented reality for orthopedic surgery using a multimodal fiducial. J Med Imaging (Bellingham). 2018;5:021209. Andress S, Johnson A, Unberath M, Winkler AF, Yu K, Fotouhi J, et al. On-the-fly augmented reality for orthopedic surgery using a multimodal fiducial. J Med Imaging (Bellingham). 2018;5:021209.
48.
go back to reference Befrui N, Fischer M, Fuerst B, Lee SC, Fotouhi J, Weidert S, et al. 3D augmented reality visualization for navigated osteosynthesis of pelvic fractures. Unfallchirurg. 2018;121:264–70.PubMedPubMedCentralCrossRef Befrui N, Fischer M, Fuerst B, Lee SC, Fotouhi J, Weidert S, et al. 3D augmented reality visualization for navigated osteosynthesis of pelvic fractures. Unfallchirurg. 2018;121:264–70.PubMedPubMedCentralCrossRef
49.
go back to reference Londei R, Esposito M, Diotte B, Weidert S, Euler E, Thaller P, et al. Intra-operative augmented reality in distal locking. Int J Comput Assist Radiol Surg. 2015;10:1395–403.PubMedCrossRef Londei R, Esposito M, Diotte B, Weidert S, Euler E, Thaller P, et al. Intra-operative augmented reality in distal locking. Int J Comput Assist Radiol Surg. 2015;10:1395–403.PubMedCrossRef
50.
go back to reference Ma L, Zhao Z, Zhang B, Jiang W, Fu L, Zhang X, et al. Three-dimensional augmented reality surgical navigation with hybrid optical and electromagnetic tracking for distal intramedullary nail interlocking. Int J Med Robot. 2018;14:e1909.PubMedCrossRef Ma L, Zhao Z, Zhang B, Jiang W, Fu L, Zhang X, et al. Three-dimensional augmented reality surgical navigation with hybrid optical and electromagnetic tracking for distal intramedullary nail interlocking. Int J Med Robot. 2018;14:e1909.PubMedCrossRef
51.
go back to reference Fotouhi J, Alexander CP, Unberath M, Taylor G, Lee SC, Fuerst B, et al. Plan in 2-D, execute in 3-D: an augmented reality solution for cup placement in total hip arthroplasty. J Med Imaging (Bellingham). 2018;5:021205. Fotouhi J, Alexander CP, Unberath M, Taylor G, Lee SC, Fuerst B, et al. Plan in 2-D, execute in 3-D: an augmented reality solution for cup placement in total hip arthroplasty. J Med Imaging (Bellingham). 2018;5:021205.
52.
go back to reference Liu H, Auvinet E, Giles J, Rodriguez YBF. Augmented reality based navigation for computer assisted hip resurfacing: A proof of concept study. Ann Biomed Eng. 2018;46:1595–605.PubMedPubMedCentralCrossRef Liu H, Auvinet E, Giles J, Rodriguez YBF. Augmented reality based navigation for computer assisted hip resurfacing: A proof of concept study. Ann Biomed Eng. 2018;46:1595–605.PubMedPubMedCentralCrossRef
53.
go back to reference Liu H, Bowyer S, Auvinet E, Baena FR. A smart registration assistant for joint replacement: a concept demonstration. Bone Jt J. 2017;99:58.CrossRef Liu H, Bowyer S, Auvinet E, Baena FR. A smart registration assistant for joint replacement: a concept demonstration. Bone Jt J. 2017;99:58.CrossRef
54.
go back to reference Wang L, Traub J, Weidert S, Heining SM, Euler E, Navab N. Parallax-free intra-operative X-ray image stitching. Med Image Anal. 2010;14:674–86.PubMedCrossRef Wang L, Traub J, Weidert S, Heining SM, Euler E, Navab N. Parallax-free intra-operative X-ray image stitching. Med Image Anal. 2010;14:674–86.PubMedCrossRef
55.
go back to reference Gavaghan K, Oliveira-Santos T, Peterhans M, Reyes M, Kim H, Anderegg S, et al. Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies. Int J Comput Assist Radiol Surg. 2012;7:547–56.PubMedCrossRef Gavaghan K, Oliveira-Santos T, Peterhans M, Reyes M, Kim H, Anderegg S, et al. Evaluation of a portable image overlay projector for the visualisation of surgical navigation data: phantom studies. Int J Comput Assist Radiol Surg. 2012;7:547–56.PubMedCrossRef
56.
go back to reference van Duren BH, Sugand K, Wescott R, Carrington R, Hart A. Augmented reality fluoroscopy simulation of the guide-wire insertion in DHS surgery: A proof of concept study. Med Eng Phys. 2018;55:52–9.PubMedCrossRef van Duren BH, Sugand K, Wescott R, Carrington R, Hart A. Augmented reality fluoroscopy simulation of the guide-wire insertion in DHS surgery: A proof of concept study. Med Eng Phys. 2018;55:52–9.PubMedCrossRef
57.
go back to reference Hiranaka T, Fujishiro T, Hida Y, Shibata Y, Tsubosaka M, Nakanishi Y, et al. Augmented reality: the use of the PicoLinker smart glasses improves wire insertion under fluoroscopy. World J Orthop. 2017;8:891–4.PubMedPubMedCentralCrossRef Hiranaka T, Fujishiro T, Hida Y, Shibata Y, Tsubosaka M, Nakanishi Y, et al. Augmented reality: the use of the PicoLinker smart glasses improves wire insertion under fluoroscopy. World J Orthop. 2017;8:891–4.PubMedPubMedCentralCrossRef
58.
go back to reference Yeo CT, Ungi T, UT P, Lasso A, RC MG, Fichtinger G. The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections. IEEE Trans Biomed Eng. 2011;58:2031–7.PubMedCrossRef Yeo CT, Ungi T, UT P, Lasso A, RC MG, Fichtinger G. The effect of augmented reality training on percutaneous needle placement in spinal facet joint injections. IEEE Trans Biomed Eng. 2011;58:2031–7.PubMedCrossRef
59.
go back to reference Condino S, Turini G, Parchi PD, Viglialoro RM, Piolanti N, Gesi M, et al. How to build a patient-specific hybrid simulator for Orthopaedic open surgery: benefits and limits of mixed-reality using the Microsoft HoloLens. J Healthc Eng. 2018;2018:5435097.PubMedPubMedCentralCrossRef Condino S, Turini G, Parchi PD, Viglialoro RM, Piolanti N, Gesi M, et al. How to build a patient-specific hybrid simulator for Orthopaedic open surgery: benefits and limits of mixed-reality using the Microsoft HoloLens. J Healthc Eng. 2018;2018:5435097.PubMedPubMedCentralCrossRef
Metadata
Title
Applicability of augmented reality in orthopedic surgery – A systematic review
Authors
Lukas Jud
Javad Fotouhi
Octavian Andronic
Alexander Aichmair
Greg Osgood
Nassir Navab
Mazda Farshad
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-3110-2

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue