Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Research article

The differences in whole-body sagittal alignment between different postures in young, healthy adults

Authors: Rui Xue, Dai Liu, Yong Shen

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Study design

Prospective study.

Objective

To identify the radiographic differences between the standard upright position and the natural and comfortable upright position.

Methods

The radiographic data of 50 young and healthy adults were evaluated, and parameters including the global cervical angle (GCA), global thoracic angle (GTA), global lumbar angle (GLA) were used to depict the spine profile; the distance from the cranial center to the posterior corner of S1 (CSVA-S), the center of the hip (CSVA-H), the center of the knee (CSVA-K) and the center of the ankle (CSVA-A) were measured in both the standard and the natural and comfortable upright positions to assess whole-body balance.

Results

Significant differences were observed in the GCA (17.39 ± 6.90 vs. 10.90 ± 3.77, p < .001), GTA (25.63 ± 7.27 vs. 45.42 ± 8.15 p < .001), GLA (42.64 ± 8.05 vs. 20.21 ± 7.47 p < .001), CSVA-S (0.33 ± 2.76 cm vs. 8.54 ± 3.78 cm, p < 0.001), CSVA-H (1.53 ± 3.11 cm vs. 5.71 ± 3.26 cm, p < 0.001), CSVA-K (3.58 ± 2.47 cm vs. 5.22 ± 2.69 cm, p = 0.002) and CSVA-A (1.79 ± 1.92 cm vs. 4.79 ± 2.51 cm, p < 0.001) between the two different standing postures. Compared with the standard upright position, the natural and comfortable upright position results in a more kyphotic spine profile.

Conclusion

Significant differences in sagittal radiographic parameters were found between the standard upright position and the natural and comfortable upright position; the latter served as a marker for energy conservation during standing and revealed a more kyphotic spinal profile. The standard upright position and natural and comfortable upright position are equally important and should be addressed before a surgical plan is developed for patients who need surgery.
Literature
1.
go back to reference Schwab F, Ungar B, Blondel B, et al. Scoliosis Research Society—Schwab adult spinal deformity classification. Spine. 2012;37:1077–82.CrossRef Schwab F, Ungar B, Blondel B, et al. Scoliosis Research Society—Schwab adult spinal deformity classification. Spine. 2012;37:1077–82.CrossRef
2.
go back to reference Boulay C, Tardieu C, Hecquet J, et al. Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J. 2005;15:415–22.CrossRef Boulay C, Tardieu C, Hecquet J, et al. Sagittal alignment of spine and pelvis regulated by pelvic incidence: standard values and prediction of lordosis. Eur Spine J. 2005;15:415–22.CrossRef
3.
go back to reference Schwab FJ, Smith VA, Biserni M, et al. () adult scoliosis: a quantitative radiographic and clinical analysis. Spine. 2002;27:387–92.CrossRef Schwab FJ, Smith VA, Biserni M, et al. () adult scoliosis: a quantitative radiographic and clinical analysis. Spine. 2002;27:387–92.CrossRef
4.
go back to reference Mac-Thiong JM, Transfeldt EE, Mehbod AA, et al. Can C7 plumbline and gravity line predict health related quality of life in adult scoliosis? Spine. 2009;34(15):E519–27.CrossRef Mac-Thiong JM, Transfeldt EE, Mehbod AA, et al. Can C7 plumbline and gravity line predict health related quality of life in adult scoliosis? Spine. 2009;34(15):E519–27.CrossRef
5.
go back to reference Daubs MD, Lenke LG, Bridwell KH, et al. Does correction of preoperative coronal imbalance make a difference in outcomes of adult patients with deformity? Spine. 2013;38(6):476–83.CrossRef Daubs MD, Lenke LG, Bridwell KH, et al. Does correction of preoperative coronal imbalance make a difference in outcomes of adult patients with deformity? Spine. 2013;38(6):476–83.CrossRef
6.
go back to reference Glassman SD, Bridwell K, Dimar JR, et al. The impact of positive sagittal balance in adult spinal deformity. Spine. 2005;30(18):2024–9.CrossRef Glassman SD, Bridwell K, Dimar JR, et al. The impact of positive sagittal balance in adult spinal deformity. Spine. 2005;30(18):2024–9.CrossRef
7.
go back to reference Kim YC, Lenke LG, Lee SJ, et al. The cranial sagittal vertical axis (CrSVA) is a better radiographic measure to predict clinical outcomes in adult spinal deformity surgery than the C7 SVA: a monocentric study. Eur Spine J. 2017;26(8):2167–75.CrossRef Kim YC, Lenke LG, Lee SJ, et al. The cranial sagittal vertical axis (CrSVA) is a better radiographic measure to predict clinical outcomes in adult spinal deformity surgery than the C7 SVA: a monocentric study. Eur Spine J. 2017;26(8):2167–75.CrossRef
8.
go back to reference Schwab F, Patel A, Ungar B, et al. Adult spinal deformity—postoperative standing imbalance. Spine. 2010;35:2224–31.CrossRef Schwab F, Patel A, Ungar B, et al. Adult spinal deformity—postoperative standing imbalance. Spine. 2010;35:2224–31.CrossRef
9.
go back to reference Doubousset J. Three-dimensional analysis of the scoliotic deformity. In: Weinstein S, editor. Pediatric spine: principles and practice. New York: Raven Press; 1994. Doubousset J. Three-dimensional analysis of the scoliotic deformity. In: Weinstein S, editor. Pediatric spine: principles and practice. New York: Raven Press; 1994.
10.
go back to reference Hey HWD, Teo AQA, Tan K-A, et al. How the spine differs in standing and in sitting—important considerations for correction of spinal deformity. Spine J. 2016;17:799–806.CrossRef Hey HWD, Teo AQA, Tan K-A, et al. How the spine differs in standing and in sitting—important considerations for correction of spinal deformity. Spine J. 2016;17:799–806.CrossRef
11.
go back to reference DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine. 2006;31(19 Suppl):S144–51.CrossRef DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine. 2006;31(19 Suppl):S144–51.CrossRef
12.
go back to reference Kim YJ, Bridwell KH, Lenke LG, et al. Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion: minimum five-year follow-up. Spine. 2008;33:2179–84.CrossRef Kim YJ, Bridwell KH, Lenke LG, et al. Proximal junctional kyphosis in adult spinal deformity after segmental posterior spinal instrumentation and fusion: minimum five-year follow-up. Spine. 2008;33:2179–84.CrossRef
13.
go back to reference Yagi M, King AB, Boachie-Adjei O. Incidence, risk factors, and natural course of proximal junctional kyphosis: surgical outcomes review of adult idiopathic scoliosis. Minimum 5 years of follow-up. Spine. 2012;37:1479–89.CrossRef Yagi M, King AB, Boachie-Adjei O. Incidence, risk factors, and natural course of proximal junctional kyphosis: surgical outcomes review of adult idiopathic scoliosis. Minimum 5 years of follow-up. Spine. 2012;37:1479–89.CrossRef
14.
go back to reference Smith JS, Shaffrey CI, Ames CP, et al. Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. J Neurosurg. 2012;71:862–8.CrossRef Smith JS, Shaffrey CI, Ames CP, et al. Assessment of symptomatic rod fracture after posterior instrumented fusion for adult spinal deformity. J Neurosurg. 2012;71:862–8.CrossRef
15.
go back to reference Lazennec JY, Brusson A, Rousseau MA. Lumbar-pelvicfemoral balance on sitting and standing lateral radiographs. Orthop Traumatol Surg Res. 2013;99S:S87–S103.CrossRef Lazennec JY, Brusson A, Rousseau MA. Lumbar-pelvicfemoral balance on sitting and standing lateral radiographs. Orthop Traumatol Surg Res. 2013;99S:S87–S103.CrossRef
16.
go back to reference Matsumoto T, Kubo S, Muratsu H, et al. Differing prosthetic alignment and femoral component sizing between 2 computer-assisted CT-free navigation systems in TKA. Orthopedics. 2011;2011(34):e860–5. Matsumoto T, Kubo S, Muratsu H, et al. Differing prosthetic alignment and femoral component sizing between 2 computer-assisted CT-free navigation systems in TKA. Orthopedics. 2011;2011(34):e860–5.
17.
go back to reference Deinlein D, Bhandarkar A, Vernon P, et al. Correlation of pelvic and spinal parameters in adult deformity patients with neutral sagittal balance. Spine Deform. 2013;1:458–63.CrossRef Deinlein D, Bhandarkar A, Vernon P, et al. Correlation of pelvic and spinal parameters in adult deformity patients with neutral sagittal balance. Spine Deform. 2013;1:458–63.CrossRef
18.
go back to reference Hey HWD, Tan KA, Chin BZ, et al. Comparison of whole-body sagittal alignment during directed vs natural, relaxed standing postures in young, healthy adults. Spine J. 2019;19(11):1832–9.CrossRef Hey HWD, Tan KA, Chin BZ, et al. Comparison of whole-body sagittal alignment during directed vs natural, relaxed standing postures in young, healthy adults. Spine J. 2019;19(11):1832–9.CrossRef
19.
go back to reference Annis P, Lawrence BD, Spiker WR, Zhang Y, Chen W, Daubs MD. Predictive factors for acute proximal junctional failure after adult deformity surgery with upper instrumented vertebrae in the thoracolumbar spine. Evid Based Spine Care. 2014;5:160–2.CrossRef Annis P, Lawrence BD, Spiker WR, Zhang Y, Chen W, Daubs MD. Predictive factors for acute proximal junctional failure after adult deformity surgery with upper instrumented vertebrae in the thoracolumbar spine. Evid Based Spine Care. 2014;5:160–2.CrossRef
20.
go back to reference Emami A, Deviren V, Berven S, et al. Outcome and complications of long fusions to the sacrum in adult spine deformity: Luque-Galveston, combined iliac and sacral screws, and sacral fixation. Spine. 2002;27(7):776–86.CrossRef Emami A, Deviren V, Berven S, et al. Outcome and complications of long fusions to the sacrum in adult spine deformity: Luque-Galveston, combined iliac and sacral screws, and sacral fixation. Spine. 2002;27(7):776–86.CrossRef
21.
go back to reference Sanchez-Mariscal F, Gomez-Rice A, Izquierdo E, et al. Correlation of radiographic and functional measurements in patients who underwent primary scoliosis surgery in adult age. Spine. 2012;37(7):592–8.CrossRef Sanchez-Mariscal F, Gomez-Rice A, Izquierdo E, et al. Correlation of radiographic and functional measurements in patients who underwent primary scoliosis surgery in adult age. Spine. 2012;37(7):592–8.CrossRef
22.
go back to reference Cecchinato R, Langella F, Bassani R, et al. Variations of cervical lordosis and head alignment after pedicle subtraction osteotomy surgery for sagittal imbalance. Eur Spine J. 2014;6:644–9.CrossRef Cecchinato R, Langella F, Bassani R, et al. Variations of cervical lordosis and head alignment after pedicle subtraction osteotomy surgery for sagittal imbalance. Eur Spine J. 2014;6:644–9.CrossRef
23.
go back to reference Obeid I, Boniello A, Boissiere L, et al. Cervical spine alignment following lumbar pedicle subtraction osteotomy for sagittal imbalance. Eur Spine J. 2015;24:1191–8.CrossRef Obeid I, Boniello A, Boissiere L, et al. Cervical spine alignment following lumbar pedicle subtraction osteotomy for sagittal imbalance. Eur Spine J. 2015;24:1191–8.CrossRef
24.
go back to reference Protopsaltis TS, Scheer JK, Terran JS, et al. How the neck affects the back: changes in regional cervical sagittal alignment correlate to HRQOL improvement in adult thoracolumbar deformity patients at 2-year follow-up. J Neurosurg Spine. 2015;23:153–8.CrossRef Protopsaltis TS, Scheer JK, Terran JS, et al. How the neck affects the back: changes in regional cervical sagittal alignment correlate to HRQOL improvement in adult thoracolumbar deformity patients at 2-year follow-up. J Neurosurg Spine. 2015;23:153–8.CrossRef
Metadata
Title
The differences in whole-body sagittal alignment between different postures in young, healthy adults
Authors
Rui Xue
Dai Liu
Yong Shen
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03715-2

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue