Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

01-12-2020 | Research article

Adding exogenous biglycan or decorin improves tendon formation for equine peritenon and tendon proper cells in vitro

Authors: Monica Y. Pechanec, Tannah N. Boyd, Keith Baar, Michael J. Mienaltowski

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Tendon injuries amount to one of the leading causes of career-ending injuries in horses due to the inability for tendon to completely repair and the high reinjury potential. As a result, novel therapeutics are necessary to improve repair with the goal of decreasing leg lameness and potential reinjury. Small leucine-rich repeat proteoglycans (SLRPs), a class of regulatory molecules responsible for collagen organization and maturation, may be one such therapeutic to improve tendon repair. Before SLRP supplementation can occur in vivo, proper evaluation of the effect of these molecules in vitro needs to be assessed. The objective of this study was to evaluate the effectiveness of purified bovine biglycan or decorin on tendon proper and peritenon cell populations in three-dimensional tendon constructs.

Methods

Equine tendon proper or peritenon cell seeded fibrin three-dimensional constructs were supplemented with biglycan or decorin at two concentrations (5 nM or 25 nM). The functionality and ultrastructural morphology of the constructs were assessed using biomechanics, collagen content analysis, transmission electron microscopy (TEM), and gene expression by real time – quantitative polymerase chain reaction (RT-qPCR).

Results

SLRP supplementation affected both tendon proper and peritenon cells-seeded constructs. With additional SLRPs, material and tensile properties of constructs strengthened, though ultrastructural analyses indicated production of similar-sized or smaller fibrils. Overall expression of tendon markers was bolstered more in peritenon cells supplemented with either SLRP, while supplementation of SLRPs to TP cell-derived constructs demonstrated fewer changes in tendon and extracellular matrix markers. Moreover, relative to non-supplemented tendon proper cell-seeded constructs, SLRP supplementation of the peritenon cells showed increases in mechanical strength, material properties, and collagen content.

Conclusions

The SLRP-supplemented peritenon cells produced constructs with greater mechanical and material properties than tendon proper seeded constructs, as well as increased expression of matrix assembly molecules. These findings provide evidence that SLRPs should be further investigated for their potential to improve tendon formation in engineered grafts or post-injury.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tipton TE, Ray CS, Hand DR. Superficial digital flexor tendonitis in cutting horses: 19 cases (2007-2011). J Am Vet Med A. 2013;243:1162–5.CrossRef Tipton TE, Ray CS, Hand DR. Superficial digital flexor tendonitis in cutting horses: 19 cases (2007-2011). J Am Vet Med A. 2013;243:1162–5.CrossRef
2.
go back to reference Thorpe CT, Glegg PD, Birch HL. A review of tendon injury: why is the equine superficial digital flexor tendon most at risk? Equine Vet J. 2010;42(2):174–80.PubMedCrossRef Thorpe CT, Glegg PD, Birch HL. A review of tendon injury: why is the equine superficial digital flexor tendon most at risk? Equine Vet J. 2010;42(2):174–80.PubMedCrossRef
3.
go back to reference Jacobson E, Dart AJ, Mondori T, Horadogoda N, Jeffcott LB, Little CB, Smith MM. Focal experimental injury leads to widespread gene expression and histologic changes in equine flexor tendons. PLoS One. 2015;10(4):e0122220.PubMedCrossRef Jacobson E, Dart AJ, Mondori T, Horadogoda N, Jeffcott LB, Little CB, Smith MM. Focal experimental injury leads to widespread gene expression and histologic changes in equine flexor tendons. PLoS One. 2015;10(4):e0122220.PubMedCrossRef
4.
5.
go back to reference Mienaltowski MJ, Birk DE. Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol. 2014;802:5–29.PubMedCrossRef Mienaltowski MJ, Birk DE. Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol. 2014;802:5–29.PubMedCrossRef
6.
go back to reference Dourte LM, Pathmanathan L, Mienaltowski MJ, Jawad AF, Birk DE, Soslowsky LJ. Mechanical, compositional, and structural properties of the mouse patellar tendon with changes in biglycan gene expression. J Orthop Res. 2013;31(9):1430–7.PubMedPubMedCentralCrossRef Dourte LM, Pathmanathan L, Mienaltowski MJ, Jawad AF, Birk DE, Soslowsky LJ. Mechanical, compositional, and structural properties of the mouse patellar tendon with changes in biglycan gene expression. J Orthop Res. 2013;31(9):1430–7.PubMedPubMedCentralCrossRef
7.
go back to reference Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Kumar A, Beason DP, Iozzo RV, Birk DE, Soslowsky LJ. The injury response of aged tendons in the absence of biglycan and decorin. Matrix Biol. 2014;35:232–8.PubMedCrossRef Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Kumar A, Beason DP, Iozzo RV, Birk DE, Soslowsky LJ. The injury response of aged tendons in the absence of biglycan and decorin. Matrix Biol. 2014;35:232–8.PubMedCrossRef
8.
go back to reference Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Satchell L, Kumar A, Pathmanathan L, Beason DP, Iozzo RV, Birk DE, Soslowsky LF. Decorin expression is important for age-related changes in tendon structure and mechanical properties. Matrix Biol. 2013;32:3–13.PubMedCrossRef Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Satchell L, Kumar A, Pathmanathan L, Beason DP, Iozzo RV, Birk DE, Soslowsky LF. Decorin expression is important for age-related changes in tendon structure and mechanical properties. Matrix Biol. 2013;32:3–13.PubMedCrossRef
9.
go back to reference Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Satchell L, Kumar A, Pathmanathan L, Beason DP, Iozzo RV, Birk DE, Soslowsky LF. The tendon injury response is influenced by decorin and biglycan. Annu Rev Biomed Eng. 2014;42:619–30.CrossRef Dunkman AA, Buckley MR, Mienaltowski MJ, Adams SM, Thomas SJ, Satchell L, Kumar A, Pathmanathan L, Beason DP, Iozzo RV, Birk DE, Soslowsky LF. The tendon injury response is influenced by decorin and biglycan. Annu Rev Biomed Eng. 2014;42:619–30.CrossRef
10.
go back to reference Mienaltowski MJ, Dunkman AA, Buckley MR, Beason DP, Adams SM, Birk DE, Soslowsky LJ. Injury response of geriatric mouse patellar tendons. J Orthop Res. 2016;34:1256–63.PubMedPubMedCentralCrossRef Mienaltowski MJ, Dunkman AA, Buckley MR, Beason DP, Adams SM, Birk DE, Soslowsky LJ. Injury response of geriatric mouse patellar tendons. J Orthop Res. 2016;34:1256–63.PubMedPubMedCentralCrossRef
11.
go back to reference Lechner BE, Lim JH, Mercado ML, Fallon JR. Developmental regulation of biglycan expression in muscle and tendon. Muscle Nerve. 2006;34(3):347–55.PubMedCrossRef Lechner BE, Lim JH, Mercado ML, Fallon JR. Developmental regulation of biglycan expression in muscle and tendon. Muscle Nerve. 2006;34(3):347–55.PubMedCrossRef
12.
go back to reference Robinson KA, Sun M, Barnum CE, Weiss SN, Huegel J, Shetye SS, Lin L, Saez D, Adams SM, Iozzo RV, Soslowsky LJ, Birk DE. Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons. Matrix Biol. 2017;64:81–93.PubMedPubMedCentralCrossRef Robinson KA, Sun M, Barnum CE, Weiss SN, Huegel J, Shetye SS, Lin L, Saez D, Adams SM, Iozzo RV, Soslowsky LJ, Birk DE. Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons. Matrix Biol. 2017;64:81–93.PubMedPubMedCentralCrossRef
13.
go back to reference Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13:1219–27.PubMedCrossRef Bi Y, Ehirchiou D, Kilts TM, Inkson CA, Embree MC, Sonoyama W, Li L, Leet AI, Seo BM, Zhang L, Shi S, Young MF. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat Med. 2007;13:1219–27.PubMedCrossRef
14.
go back to reference Frey H, Schroeder N, Manon-Jensen T, Iozzo RV, Schaefer L. Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J. 2013;280(10):2165–79.PubMedPubMedCentralCrossRef Frey H, Schroeder N, Manon-Jensen T, Iozzo RV, Schaefer L. Biological interplay between proteoglycans and their innate immune receptors in inflammation. FEBS J. 2013;280(10):2165–79.PubMedPubMedCentralCrossRef
15.
go back to reference Ingraham JM, Hauck RM, Ehrlich HP. Is the tendon embryogenesis process resurrected during tendon healing? Plast Reconstr Surg. 2003;112(3):844–54.PubMedCrossRef Ingraham JM, Hauck RM, Ehrlich HP. Is the tendon embryogenesis process resurrected during tendon healing? Plast Reconstr Surg. 2003;112(3):844–54.PubMedCrossRef
16.
go back to reference Dyment NA, Liu CF, Kazemi N, Aschbacher-Smith L. The Paratenon contributes to Scleraxis-expressing cells during patellar tendon healing. PLoS One. 2013;8(3):e59944.PubMedPubMedCentralCrossRef Dyment NA, Liu CF, Kazemi N, Aschbacher-Smith L. The Paratenon contributes to Scleraxis-expressing cells during patellar tendon healing. PLoS One. 2013;8(3):e59944.PubMedPubMedCentralCrossRef
17.
go back to reference Jelinsky SA, Archambault J, Li L, Seeherman H. Tendon-selective genes identified from rat and human musculoskeletal tissues. J Orthop Res. 2010;28(3):289–97.PubMedCrossRef Jelinsky SA, Archambault J, Li L, Seeherman H. Tendon-selective genes identified from rat and human musculoskeletal tissues. J Orthop Res. 2010;28(3):289–97.PubMedCrossRef
18.
go back to reference Mienaltowski MJ, Adams SM, Birk DE. Regional differences in stem cell/progenitor cell populations from the mouse Achilles tendon. Tissue Eng Part A. 2013;19(1–2):199–210.PubMedCrossRef Mienaltowski MJ, Adams SM, Birk DE. Regional differences in stem cell/progenitor cell populations from the mouse Achilles tendon. Tissue Eng Part A. 2013;19(1–2):199–210.PubMedCrossRef
19.
go back to reference Mienaltowski MJ, Cánovas A, Fates VA, Hampton AR, Pechanec MY, Islas-Trejo A, Medrano JF. Transcriptome profiles of isolated murine Achilles tendon proper- and peritenon-derived progenitor cells. J Orthop Res. 2019;37(6):1409–18.PubMedCrossRef Mienaltowski MJ, Cánovas A, Fates VA, Hampton AR, Pechanec MY, Islas-Trejo A, Medrano JF. Transcriptome profiles of isolated murine Achilles tendon proper- and peritenon-derived progenitor cells. J Orthop Res. 2019;37(6):1409–18.PubMedCrossRef
20.
go back to reference Mienaltowski MJ, Adams SM, Birk DE. Tendon proper- and peritenon-derived progenitor cells have unique tenogenic properties. Stem Cell Res Ther. 2014;5(4):86.PubMedPubMedCentralCrossRef Mienaltowski MJ, Adams SM, Birk DE. Tendon proper- and peritenon-derived progenitor cells have unique tenogenic properties. Stem Cell Res Ther. 2014;5(4):86.PubMedPubMedCentralCrossRef
21.
go back to reference Pechanec MY, Lee-Barthel A, Baar K, Mienaltowski MJ. Evaluation and optimization of a three-dimensional construct model for equine superficial digital flexor tendon. J Equine Vet Sci. 2018;71:90–7.CrossRef Pechanec MY, Lee-Barthel A, Baar K, Mienaltowski MJ. Evaluation and optimization of a three-dimensional construct model for equine superficial digital flexor tendon. J Equine Vet Sci. 2018;71:90–7.CrossRef
22.
go back to reference Paxton JZ, Grover LM, Baar K. Engineering an In vitro model of a functional ligament from bone to bone. Tissue Eng. 2010;16(11):3515–25.CrossRef Paxton JZ, Grover LM, Baar K. Engineering an In vitro model of a functional ligament from bone to bone. Tissue Eng. 2010;16(11):3515–25.CrossRef
23.
go back to reference Kapacee Z, Yeung CY, Lu Y, Crabtree D, Holmes DF, Kadler KE. Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3. Matrix Biol. 2010;29(8):668–77.PubMedPubMedCentralCrossRef Kapacee Z, Yeung CY, Lu Y, Crabtree D, Holmes DF, Kadler KE. Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3. Matrix Biol. 2010;29(8):668–77.PubMedPubMedCentralCrossRef
24.
go back to reference Amenta AR, Yilmaz A, Bogdanovich S, McKechnie BA, Abedi M, Khurana TS, Fallon JR. Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. PNAS. 2011;108:762–7.PubMedCrossRef Amenta AR, Yilmaz A, Bogdanovich S, McKechnie BA, Abedi M, Khurana TS, Fallon JR. Biglycan recruits utrophin to the sarcolemma and counters dystrophic pathology in mdx mice. PNAS. 2011;108:762–7.PubMedCrossRef
25.
go back to reference Csont T, Gorbe A, Bereczki E, Szunyog A, Aypar E, Toth ME, Varga ZV, Csonka C, Fulop F, Santha M, Ferdinandy P. Biglycan protects cardiomyocytes against hypoxia/reoxygenation injury: role of nitric oxide. J Mol Cell Cardiol. 2010;48(4):649–52.PubMedCrossRef Csont T, Gorbe A, Bereczki E, Szunyog A, Aypar E, Toth ME, Varga ZV, Csonka C, Fulop F, Santha M, Ferdinandy P. Biglycan protects cardiomyocytes against hypoxia/reoxygenation injury: role of nitric oxide. J Mol Cell Cardiol. 2010;48(4):649–52.PubMedCrossRef
26.
go back to reference Reese SP, Underwood CJ, Weiss JA. Effects of decorin proteoglycan on fibrillogenesis, ultrastructure, and mechanics of type I collagen gels. Matrix Biol. 2013;32(7–8):414–23.PubMedCrossRef Reese SP, Underwood CJ, Weiss JA. Effects of decorin proteoglycan on fibrillogenesis, ultrastructure, and mechanics of type I collagen gels. Matrix Biol. 2013;32(7–8):414–23.PubMedCrossRef
27.
go back to reference Lee-Barthel A, Baar K, West DWD. Treatment of ligament constructs with exercise-conditioned serum: a translational tissue engineering model. JOVE-J Vis Exp. 2017;124:1–13. Lee-Barthel A, Baar K, West DWD. Treatment of ligament constructs with exercise-conditioned serum: a translational tissue engineering model. JOVE-J Vis Exp. 2017;124:1–13.
28.
go back to reference Kapacee Z, Richardson SH, Lu Y, Starborg T, Holms DF, Baar K, Kadler KE. Tension is required for Fibripositor formation. Matrix Biol. 2008;27(4):371–5.PubMedCrossRef Kapacee Z, Richardson SH, Lu Y, Starborg T, Holms DF, Baar K, Kadler KE. Tension is required for Fibripositor formation. Matrix Biol. 2008;27(4):371–5.PubMedCrossRef
29.
go back to reference Calve S, Dennis RG, Kosnik PE II, Baar K, Grosh K, Arruda EM. Engineering of functional tendon. Tissue Eng. 2004;10(5/6):755–61.PubMedCrossRef Calve S, Dennis RG, Kosnik PE II, Baar K, Grosh K, Arruda EM. Engineering of functional tendon. Tissue Eng. 2004;10(5/6):755–61.PubMedCrossRef
30.
go back to reference Larkin LM, Calve S, Kostrominova TY, Arruda EM. Structure and functional evaluation of tendon – skeletal muscle constructs engineered in Vitro. Tissue Eng. 2006;12(11):3149–58.PubMedPubMedCentralCrossRef Larkin LM, Calve S, Kostrominova TY, Arruda EM. Structure and functional evaluation of tendon – skeletal muscle constructs engineered in Vitro. Tissue Eng. 2006;12(11):3149–58.PubMedPubMedCentralCrossRef
31.
go back to reference Woessner JF Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93:440–7.PubMedCrossRef Woessner JF Jr. The determination of hydroxyproline in tissue and protein samples containing small proportions of this imino acid. Arch Biochem Biophys. 1961;93:440–7.PubMedCrossRef
32.
go back to reference Edwards CA, O’Brien WD Jr. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin Chim Acta. 1980;104(2):161–7.PubMedCrossRef Edwards CA, O’Brien WD Jr. Modified assay for determination of hydroxyproline in a tissue hydrolyzate. Clin Chim Acta. 1980;104(2):161–7.PubMedCrossRef
33.
go back to reference Mushran SP, Agrawal MC, Prasad B. Mechanism of oxidation by chloramine-T. Part I. Oxidation of α-hydroxy-acids. J Chem Soc. B 1971;Part I:1712–4. Mushran SP, Agrawal MC, Prasad B. Mechanism of oxidation by chloramine-T. Part I. Oxidation of α-hydroxy-acids. J Chem Soc. B 1971;Part I:1712–4.
34.
go back to reference Creemers LB, Jansen DC, van Veen-Reurings A, Van den Bos T, Everts V. Microassay for the assessment of low levels of hydroxyproline. Biotechniques. 1997;22:656–8.PubMedCrossRef Creemers LB, Jansen DC, van Veen-Reurings A, Van den Bos T, Everts V. Microassay for the assessment of low levels of hydroxyproline. Biotechniques. 1997;22:656–8.PubMedCrossRef
35.
go back to reference Birk DE, Trelstad RL. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J Cell Bio. 1984;99:2024–33.CrossRef Birk DE, Trelstad RL. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J Cell Bio. 1984;99:2024–33.CrossRef
36.
go back to reference Birk DE, Trelstad RL. Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Bio. 1986;103:231–40.CrossRef Birk DE, Trelstad RL. Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Bio. 1986;103:231–40.CrossRef
37.
go back to reference Mienaltowski MJ, Huang L, Frisbie DD, McIlwraith SW, Stromberg AJ, Bathke AC, MacLeod JN. Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions. BMC Med Genet. 2009;2:60. Mienaltowski MJ, Huang L, Frisbie DD, McIlwraith SW, Stromberg AJ, Bathke AC, MacLeod JN. Transcriptional profiling differences for articular cartilage and repair tissue in equine joint surface lesions. BMC Med Genet. 2009;2:60.
38.
go back to reference Mienaltowski MJ, Huang L, Stromberg AJ, MacLeod JN. Differential gene expression associated with postnatal equine articular cartilage maturation. BMC Musculoskelet Disord. 2008;9:149.PubMedPubMedCentralCrossRef Mienaltowski MJ, Huang L, Stromberg AJ, MacLeod JN. Differential gene expression associated with postnatal equine articular cartilage maturation. BMC Musculoskelet Disord. 2008;9:149.PubMedPubMedCentralCrossRef
39.
go back to reference Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.PubMedPubMedCentralCrossRef Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.PubMedPubMedCentralCrossRef
40.
go back to reference Scott EY, Mansour T, Bellone RR, Brown C, Mienaltowski MJ, Penedo MC, Ross PJ, Valberg SJ, Murray JD, Finno CJ. Identification of long non-coding RNA in the horse transcriptome. BMC Genomics. 2017;18(1):511.PubMedPubMedCentralCrossRef Scott EY, Mansour T, Bellone RR, Brown C, Mienaltowski MJ, Penedo MC, Ross PJ, Valberg SJ, Murray JD, Finno CJ. Identification of long non-coding RNA in the horse transcriptome. BMC Genomics. 2017;18(1):511.PubMedPubMedCentralCrossRef
41.
go back to reference Mansour TA, Scott EY, Finno CJ, Bellone RR, Mienaltowski MJ, Pendo MC, Ross PJ, Valberg SJ, Murray JD, Brown CT. Tissue resolved, gene structure refined equine transcriptome. BMC Genomics. 2017;18(1):103.PubMedPubMedCentralCrossRef Mansour TA, Scott EY, Finno CJ, Bellone RR, Mienaltowski MJ, Pendo MC, Ross PJ, Valberg SJ, Murray JD, Brown CT. Tissue resolved, gene structure refined equine transcriptome. BMC Genomics. 2017;18(1):103.PubMedPubMedCentralCrossRef
42.
go back to reference Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339:62–6.PubMedCrossRef Ramakers C, Ruijter JM, Deprez RH, Moorman AF. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339:62–6.PubMedCrossRef
43.
go back to reference Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression's CT difference” formula. J Mol Med (Berl). 2006;84:901–10.CrossRef Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H. Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression's CT difference” formula. J Mol Med (Berl). 2006;84:901–10.CrossRef
44.
go back to reference Wilcoxon F. Individual comparisons by ranking methods. Biom Bull. 1945;1(6):80–3.CrossRef Wilcoxon F. Individual comparisons by ranking methods. Biom Bull. 1945;1(6):80–3.CrossRef
46.
go back to reference Murphy R. On the use of one-sided statistical tests in biomedical research. Clin Exp Pharmacol Physiol. 2018;45(1):109–14.PubMedCrossRef Murphy R. On the use of one-sided statistical tests in biomedical research. Clin Exp Pharmacol Physiol. 2018;45(1):109–14.PubMedCrossRef
47.
go back to reference Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Bio. 1997;136(3):729–43.CrossRef Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV. Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Bio. 1997;136(3):729–43.CrossRef
48.
go back to reference Wadhwa S, Embree MC, Kilts T, Young MF, Ameye LG. Accelerated osteoarthritis in the temporomandibular joint of biglycan/fibromodulin double-deficient mice. Osteoarthr Cartilage. 2005;13(9):817–27.CrossRef Wadhwa S, Embree MC, Kilts T, Young MF, Ameye LG. Accelerated osteoarthritis in the temporomandibular joint of biglycan/fibromodulin double-deficient mice. Osteoarthr Cartilage. 2005;13(9):817–27.CrossRef
49.
go back to reference Parisuthiman D, Mochida Y, Duarte WR, Yamauchi M. Biglycan modulates osteoblast differentiation and matrix mineralization. J Bone Miner Res. 2009;20(10):1878–86.CrossRef Parisuthiman D, Mochida Y, Duarte WR, Yamauchi M. Biglycan modulates osteoblast differentiation and matrix mineralization. J Bone Miner Res. 2009;20(10):1878–86.CrossRef
50.
go back to reference Han B, Li Q, Wang C, Patel P, Adams SM, Doyran B, Nia HT, Oftadeh R, Zhou S, Li CY, Liu XS, XL LU, Enomoto-Iwamoto M, Qin L, Mauck RL, Iozzo RV, Birk DE, Han L. Decorin regulates the aggrecan network integrity and biomechanical functions of cartilage extracellular matrix. ACS Nano. 2019;13(10):11320–33.PubMedCrossRefPubMedCentral Han B, Li Q, Wang C, Patel P, Adams SM, Doyran B, Nia HT, Oftadeh R, Zhou S, Li CY, Liu XS, XL LU, Enomoto-Iwamoto M, Qin L, Mauck RL, Iozzo RV, Birk DE, Han L. Decorin regulates the aggrecan network integrity and biomechanical functions of cartilage extracellular matrix. ACS Nano. 2019;13(10):11320–33.PubMedCrossRefPubMedCentral
51.
go back to reference Delalande A, Gosselin MP, Suwalski A, Guilmain W, Leduc C, Berchel M, Jaffres PA, Baril P, Midoux P, Pichon C. Enhanced Achilles tendon haling by fibromodulin gene transfer. Nanomedicine. 2015;11(7):1735–44.PubMedCrossRef Delalande A, Gosselin MP, Suwalski A, Guilmain W, Leduc C, Berchel M, Jaffres PA, Baril P, Midoux P, Pichon C. Enhanced Achilles tendon haling by fibromodulin gene transfer. Nanomedicine. 2015;11(7):1735–44.PubMedCrossRef
52.
go back to reference Ye Y, Hu G, Guo F, Zhang W, Wang J, Chen A. Glycosaminoglycan chains of biglycan promote bone morphogenetic protein-4-induced osteoblast differentiation. Int J Mol Med. 2012;30(5):1075–80.PubMedCrossRef Ye Y, Hu G, Guo F, Zhang W, Wang J, Chen A. Glycosaminoglycan chains of biglycan promote bone morphogenetic protein-4-induced osteoblast differentiation. Int J Mol Med. 2012;30(5):1075–80.PubMedCrossRef
53.
go back to reference Berendsen AD, Fisher LW, Kilts TM, Owens RT, Robey PG, Gutkind JS, Young MF. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc Natl Acad Sci U S A. 2011;108(41):17022–7.PubMedPubMedCentralCrossRef Berendsen AD, Fisher LW, Kilts TM, Owens RT, Robey PG, Gutkind JS, Young MF. Modulation of canonical Wnt signaling by the extracellular matrix component biglycan. Proc Natl Acad Sci U S A. 2011;108(41):17022–7.PubMedPubMedCentralCrossRef
54.
go back to reference Schonherr E, Levkau B, Schaefer L, Kresse H, Walsh K. Decorin affects endothelial cells by Akt-dependent and -independent pathways. Ann N Y Acad Sci. 2002;973:149–52.PubMedCrossRef Schonherr E, Levkau B, Schaefer L, Kresse H, Walsh K. Decorin affects endothelial cells by Akt-dependent and -independent pathways. Ann N Y Acad Sci. 2002;973:149–52.PubMedCrossRef
55.
go back to reference Mohan RR, Tripathi R, Sharma A, Sinha PR, Giuliano EA, Hesemann NP, Chaurasia SS. Decorin antagonizes corneal fibroblast migration via caveolae-mediated endocytosis of epidermal growth factor receptor. Exp Eye Res. 2019;180:200–7.PubMedCrossRef Mohan RR, Tripathi R, Sharma A, Sinha PR, Giuliano EA, Hesemann NP, Chaurasia SS. Decorin antagonizes corneal fibroblast migration via caveolae-mediated endocytosis of epidermal growth factor receptor. Exp Eye Res. 2019;180:200–7.PubMedCrossRef
56.
go back to reference Geng Y, McQuillan D, Roughley PJ. SLRP interaction can protect collagen fibrils from cleavage by collagenases. Matrix Biol. 2006;25(8):484–91.PubMedCrossRef Geng Y, McQuillan D, Roughley PJ. SLRP interaction can protect collagen fibrils from cleavage by collagenases. Matrix Biol. 2006;25(8):484–91.PubMedCrossRef
57.
go back to reference Meij JT, Carlson EC, Wang L, Liu CY, Jester JV, Birk DE, Kao WW. Targeted expression of a lumican transgene rescues corneal deficiencies in lumican-null mice. Mol Vis. 2007;13:2012–8.PubMed Meij JT, Carlson EC, Wang L, Liu CY, Jester JV, Birk DE, Kao WW. Targeted expression of a lumican transgene rescues corneal deficiencies in lumican-null mice. Mol Vis. 2007;13:2012–8.PubMed
58.
go back to reference Jiang W, Ting K, Lee S, Zara JN, Song R, Li C, Chen E, Zhang X, Zhao Z, Soo C, Zheng Z. Fibromodulin reduces scar size and increases scar tensile strength in normal and excessive-mechanical-loading porcine cutaneous wounds. J Cell Mol Med. 2017;22(4):2510–3.CrossRef Jiang W, Ting K, Lee S, Zara JN, Song R, Li C, Chen E, Zhang X, Zhao Z, Soo C, Zheng Z. Fibromodulin reduces scar size and increases scar tensile strength in normal and excessive-mechanical-loading porcine cutaneous wounds. J Cell Mol Med. 2017;22(4):2510–3.CrossRef
59.
go back to reference Gaspar R, Pipicz M, Hawchar F, Kovacs D, Djirackor L, Gorbe A, Varga ZV, Kiricsi M, Ptrovski G, Gacser A, Csonka C, Csont T. The cryoprotective effect of biglycan core protein involves toll-like receptor 4 signaling in cardiomyocytes. J Mol Cell Cardiol. 2016;99:138–50.PubMedCrossRef Gaspar R, Pipicz M, Hawchar F, Kovacs D, Djirackor L, Gorbe A, Varga ZV, Kiricsi M, Ptrovski G, Gacser A, Csonka C, Csont T. The cryoprotective effect of biglycan core protein involves toll-like receptor 4 signaling in cardiomyocytes. J Mol Cell Cardiol. 2016;99:138–50.PubMedCrossRef
60.
go back to reference Barnette DN, Hulin A, Ahmed AS, Colige AC, Azhar M, Lincoln J. TGFβ-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. J Mol Cell Cardiol. 2013;65:137–46.PubMedCrossRef Barnette DN, Hulin A, Ahmed AS, Colige AC, Azhar M, Lincoln J. TGFβ-Smad and MAPK signaling mediate scleraxis and proteoglycan expression in heart valves. J Mol Cell Cardiol. 2013;65:137–46.PubMedCrossRef
61.
go back to reference Farhat YM, Al-Maliki AA, Chen T, Juneja SC, Schwarz EM, O’Kefe RJ, Awad HA. Gene expression analysis of the pleitrophic effects of TGF-β1 in an in vitro model of flexor tendon healing. PLoS One. 2012;7(12):e51411.PubMedPubMedCentralCrossRef Farhat YM, Al-Maliki AA, Chen T, Juneja SC, Schwarz EM, O’Kefe RJ, Awad HA. Gene expression analysis of the pleitrophic effects of TGF-β1 in an in vitro model of flexor tendon healing. PLoS One. 2012;7(12):e51411.PubMedPubMedCentralCrossRef
62.
go back to reference Berendsen AD, Pinnow EL, Maeda A, et al. Biglycan modulates angiogenesis and bone formation during fracture healing. Matrix Biol. 2014;35:223–31.PubMedCrossRef Berendsen AD, Pinnow EL, Maeda A, et al. Biglycan modulates angiogenesis and bone formation during fracture healing. Matrix Biol. 2014;35:223–31.PubMedCrossRef
63.
go back to reference Neill T, Painter H, Buraschi S, et al. Decorin antagonizes the angiogenic network. Concurrent inhibition of met, hypoxia inducible factor-1α and vascular endothelial growth factor a and induction of thrombospondin-1 and TIMP3. J Biol Chem. 2012;287:5492–506.PubMedCrossRef Neill T, Painter H, Buraschi S, et al. Decorin antagonizes the angiogenic network. Concurrent inhibition of met, hypoxia inducible factor-1α and vascular endothelial growth factor a and induction of thrombospondin-1 and TIMP3. J Biol Chem. 2012;287:5492–506.PubMedCrossRef
64.
go back to reference Korntner S, Lehner C, Gehwolf R, Wagner A, Grutz M, Kunkel N, Temfer H, Traweger A. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev. 2019;146:170–89.PubMedCrossRef Korntner S, Lehner C, Gehwolf R, Wagner A, Grutz M, Kunkel N, Temfer H, Traweger A. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev. 2019;146:170–89.PubMedCrossRef
65.
go back to reference DiPietro LA. Angiogenesis and scar formation in healing wounds. Curr Opin Rheumatol. 2013;25(1):87–91.PubMedCrossRef DiPietro LA. Angiogenesis and scar formation in healing wounds. Curr Opin Rheumatol. 2013;25(1):87–91.PubMedCrossRef
66.
go back to reference Cadby JA, Buehler E, Godbout C, van Weeren RP, Snedeker JG. Differences between the cell populations from the peritenon and the tendon core with regard to their potential implications in tendon repair. PLoS One. 2014;9(3):e92474.PubMedPubMedCentralCrossRef Cadby JA, Buehler E, Godbout C, van Weeren RP, Snedeker JG. Differences between the cell populations from the peritenon and the tendon core with regard to their potential implications in tendon repair. PLoS One. 2014;9(3):e92474.PubMedPubMedCentralCrossRef
67.
go back to reference Costa-Almeida R, Gonçalves AI, Gershovich P, Rodrigues MT, Reis RL, Gomes ME. Tendon stem cell niche. In: Turksen K, editor. Tissue engineering and stem cell niche. Cham: Springer; 2015. Stem Cell Niche. Costa-Almeida R, Gonçalves AI, Gershovich P, Rodrigues MT, Reis RL, Gomes ME. Tendon stem cell niche. In: Turksen K, editor. Tissue engineering and stem cell niche. Cham: Springer; 2015. Stem Cell Niche.
68.
go back to reference Dyment NA, Hagiwara Y, Matthews BG, Li Y, Kalajzic I, Rowe DW. Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One. 2014;9(4):e96113.PubMedPubMedCentralCrossRef Dyment NA, Hagiwara Y, Matthews BG, Li Y, Kalajzic I, Rowe DW. Lineage tracing of resident tendon progenitor cells during growth and natural healing. PLoS One. 2014;9(4):e96113.PubMedPubMedCentralCrossRef
Metadata
Title
Adding exogenous biglycan or decorin improves tendon formation for equine peritenon and tendon proper cells in vitro
Authors
Monica Y. Pechanec
Tannah N. Boyd
Keith Baar
Michael J. Mienaltowski
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03650-2

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue