Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Osteoporosis | Research article

High-viscosity bone cement for vertebral compression fractures: a prospective study on intravertebral diffusion and leakage of bone cement

Authors: Meiyong Wang, Qunhua Jin

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Bone cement leakage causes severe complication following percutaneous vertebroplasty. This study probed the diffusion and leakage status of bone cement injected within diverged time duration, so as to find the optimal injection time for bone cement.

Methods

A total of 70 patients with osteoporotic vertebral compression fractures with a symptom of low back pain, who underwent treatment at hospital were enrolled in this study. Patients were randomized into three groups: < 180 s, 180–300, and > 300 s of injection time duration from the beginning to the completion of the injection. The scenarios of vertebral bone cement leakage and diffusion were inspected using postoperative CT.

Results

The diffusion coefficient was higher in group A than in group B whereas it was higher in group B than in group C, but without statistical significance among the three groups. The leakage rate was without statistical significance among the three groups. The injection time of bone cement was negatively correlated with the diffusion coefficient, at the correlation coefficient of − 0.253.

Conclusions

The diffusion coefficient of high-viscosity bone cement is negatively correlated with the injection time, and the leakage rate of high-viscosity bone cement does not reduce with the prolongation of injection time.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359:1761–7.CrossRef Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359:1761–7.CrossRef
2.
go back to reference Han S, Wan S, Ning L, et al. Percutaneous vertebroplasty versus balloon kyphoplasty for treatment of osteoporotic vertebral compression fracture: a meta-analysis of randomised and non-randomised controlled trials. Int Orthop. 2011;35(9):1349–58.CrossRef Han S, Wan S, Ning L, et al. Percutaneous vertebroplasty versus balloon kyphoplasty for treatment of osteoporotic vertebral compression fracture: a meta-analysis of randomised and non-randomised controlled trials. Int Orthop. 2011;35(9):1349–58.CrossRef
3.
go back to reference Yan D, Duan L, Li J, et al. Comparative study of percutaneous vertebroplasty and kyphoplasty in the treatment of osteoporotic vertebral compression fracture. Arch Ortblop Trauma Surg. 2011;131(5):645–50.CrossRef Yan D, Duan L, Li J, et al. Comparative study of percutaneous vertebroplasty and kyphoplasty in the treatment of osteoporotic vertebral compression fracture. Arch Ortblop Trauma Surg. 2011;131(5):645–50.CrossRef
4.
go back to reference Klezl Z, Majeed H, Bommireddy R, et al. Early results after vertebral body stenting for fractures of the anterior column of the thoracolumbar spine. Injury. 2011;42(42):1038–42.CrossRef Klezl Z, Majeed H, Bommireddy R, et al. Early results after vertebral body stenting for fractures of the anterior column of the thoracolumbar spine. Injury. 2011;42(42):1038–42.CrossRef
5.
go back to reference Baroud G, Crookshank M, Bohner M. High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage. Spine. 2006;31:2562–8.CrossRef Baroud G, Crookshank M, Bohner M. High-viscosity cement significantly enhances uniformity of cement filling in vertebroplasty: an experimental model and study on cement leakage. Spine. 2006;31:2562–8.CrossRef
6.
go back to reference Zhang L, Wang J, Feng X, Tao Y, Yang J, Wang Y, Zhang S, Cai J, Huang J. A comparison of high viscosity bone cement and low viscosity bone cement vertebroplasty for severe osteoporotic vertebral compression fractures. Clin Neurol Neurosurg. 2015;129:10–6.CrossRef Zhang L, Wang J, Feng X, Tao Y, Yang J, Wang Y, Zhang S, Cai J, Huang J. A comparison of high viscosity bone cement and low viscosity bone cement vertebroplasty for severe osteoporotic vertebral compression fractures. Clin Neurol Neurosurg. 2015;129:10–6.CrossRef
7.
go back to reference Lador R, Liberman S, Ben-Galim P, Dreiangel N, Reitman CA, Hipp JA. A cadaver study to compare vertebral augmentation with a high-viscosity cement to augmentation with conventional lower-viscosity cement. J Spinal Disord Tech. 2013;26:68–73.CrossRef Lador R, Liberman S, Ben-Galim P, Dreiangel N, Reitman CA, Hipp JA. A cadaver study to compare vertebral augmentation with a high-viscosity cement to augmentation with conventional lower-viscosity cement. J Spinal Disord Tech. 2013;26:68–73.CrossRef
8.
go back to reference Georgy BA. Clinical experience with high-viscosity bone cements for percutaneous vertebral body augmentation: occurrence, degree, and location of bone cement leakage compared with kyphoplasty. AJNR Am J Neuroradiol. 2010;31(3):504–8.CrossRef Georgy BA. Clinical experience with high-viscosity bone cements for percutaneous vertebral body augmentation: occurrence, degree, and location of bone cement leakage compared with kyphoplasty. AJNR Am J Neuroradiol. 2010;31(3):504–8.CrossRef
9.
go back to reference Franc J, Lehmann P, Saliou G, et al. Vertebroplasty 10 yeas clinical and radiological fallow-up. J Neuroradiol. 2010;4:211–9.CrossRef Franc J, Lehmann P, Saliou G, et al. Vertebroplasty 10 yeas clinical and radiological fallow-up. J Neuroradiol. 2010;4:211–9.CrossRef
10.
go back to reference Baroud G, Samara M, Steffen T. Influence of mixing method on the cement temperature mixing time history and doughing time of three acrylic cements for vertebroplasty. J Biomed Mater Res B Appl Biomater. 2004;68(1):112–6.CrossRef Baroud G, Samara M, Steffen T. Influence of mixing method on the cement temperature mixing time history and doughing time of three acrylic cements for vertebroplasty. J Biomed Mater Res B Appl Biomater. 2004;68(1):112–6.CrossRef
11.
go back to reference Nam HGW, Jeong JH, Shin IY, et al. Clinical effects and radiological results of vertebroplasty: over a 2-year follow-up period. Korean J Spine. 2012;9(4):334–9.CrossRef Nam HGW, Jeong JH, Shin IY, et al. Clinical effects and radiological results of vertebroplasty: over a 2-year follow-up period. Korean J Spine. 2012;9(4):334–9.CrossRef
12.
go back to reference Boger A, Wheeler KD, Schenk B, et al. Clinical investigations of polymethylmethacrylate cement viscosity during vertebroplasty and related in vitro measurements. Eur Spine J. 2009;18(9):1272–8.CrossRef Boger A, Wheeler KD, Schenk B, et al. Clinical investigations of polymethylmethacrylate cement viscosity during vertebroplasty and related in vitro measurements. Eur Spine J. 2009;18(9):1272–8.CrossRef
13.
go back to reference Nieuwenhuijse MJ, Van Erkel AR, Dijkstra PD. Cement leakage in percutaneous vertebroplasty for osteoporotic vertebral compression fractures: identification of risk factors. Spine J. 2011;11:839–48.CrossRef Nieuwenhuijse MJ, Van Erkel AR, Dijkstra PD. Cement leakage in percutaneous vertebroplasty for osteoporotic vertebral compression fractures: identification of risk factors. Spine J. 2011;11:839–48.CrossRef
14.
go back to reference Zapałowicz K, Radek M. Percutaneous balloon kyphoplasty in the treatment of painful vertebral compression fractures: effect on local kyphosis and one-year outcomes in pain and disability. Neurol Neurochir Pol. 2015;49:11–5.CrossRef Zapałowicz K, Radek M. Percutaneous balloon kyphoplasty in the treatment of painful vertebral compression fractures: effect on local kyphosis and one-year outcomes in pain and disability. Neurol Neurochir Pol. 2015;49:11–5.CrossRef
15.
go back to reference Mpotsaris A, Abdolvahabi R, Hoffleith B, Nickel J, Harati A, Loehr C, et al. Percutaneous Vertebroplasty in vertebral compression fractures of benign or malignant origin: a prospective study of 1188 patients with follow-up of 12 months. Dtsch Arztebl Int. 2011;108(19):331–8.PubMedPubMedCentral Mpotsaris A, Abdolvahabi R, Hoffleith B, Nickel J, Harati A, Loehr C, et al. Percutaneous Vertebroplasty in vertebral compression fractures of benign or malignant origin: a prospective study of 1188 patients with follow-up of 12 months. Dtsch Arztebl Int. 2011;108(19):331–8.PubMedPubMedCentral
16.
go back to reference Klazen CA, Lohle PN, de Vries J, Jansen FH, Tielbeek AV, Blonk MC, et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet. 2010;376(9746):1085–92.CrossRef Klazen CA, Lohle PN, de Vries J, Jansen FH, Tielbeek AV, Blonk MC, et al. Vertebroplasty versus conservative treatment in acute osteoporotic vertebral compression fractures (Vertos II): an open-label randomised trial. Lancet. 2010;376(9746):1085–92.CrossRef
17.
go back to reference Yeom JS, Kim WJ, Choy WS, et al. Leakage of cement in percutaneous transpedicular vertebroplasty for painful osteoporotic compression fractures. J Bone Joint Surg (Br). 2003;85(1):83–9.CrossRef Yeom JS, Kim WJ, Choy WS, et al. Leakage of cement in percutaneous transpedicular vertebroplasty for painful osteoporotic compression fractures. J Bone Joint Surg (Br). 2003;85(1):83–9.CrossRef
Metadata
Title
High-viscosity bone cement for vertebral compression fractures: a prospective study on intravertebral diffusion and leakage of bone cement
Authors
Meiyong Wang
Qunhua Jin
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03613-7

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue