Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Pleural Effusion | Case report

Gorham-Stout disease successfully treated with sirolimus (rapamycin): a case report and review of the literature

Authors: Yu Liang, Ruicheng Tian, Jing Wang, Yuhua Shan, Hongxiang Gao, Chenjie Xie, Jingjing Li, Min Xu, Song Gu

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Gorham-Stout disease (GSD) is a rare disease characterized by bone lesions and osteolysis. Therapy usually involves surgical resection. Sirolimus (Rapamycin) is used in some patients with GSD but the efficacy and safety of Sirolimus remains unclear. We propose that Sirolimus may be a novel therapeutic for GSD and present a case and review of literature that supports this.

Case presentation

We presented a 1-year-old boy with GSD involving osteolysis of the right humerus with fracture of the left femur complicated by an effusion in the right pleural cavity. X-rays showed osteolysis in the right clavicle. A large pleural effusion was observed on the right-side, and the left lung was significantly compressed. X-rays also showed a fracture of the left femur. A femoral biopsy was performed that showed necrotic tissue in the cortical bone and a large number of irregularly shaped capillaries that proliferated within the necrotic tissue. Dilated lymphatic vessels were seen adjacent to the cortex, with fibrous tissue hyperplasia. We prescribed sirolimus, which is an oral mTOR inhibitor, for two consecutive years. The boy recovered well without other progressive bone lesions and participates in normal daily activities. His growth and development are the same as that of his peers.

Discussion and conclusion

Gorham-Stout disease is a rare and enigmatic disease characterized by the presentation of an intraosseous lymphatic anomaly (LM), which results in progressive bone resorption. Based on this case report and a literature review, we conclude that sirolimus may be an effective alternative medication for GSD.
Literature
1.
go back to reference Escande C, Schouman T, Francoise G, et al. Histological features and management of a mandibular Gorham disease: a case report and review of maxillofacial cases in the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(3):e30–7.CrossRef Escande C, Schouman T, Francoise G, et al. Histological features and management of a mandibular Gorham disease: a case report and review of maxillofacial cases in the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;106(3):e30–7.CrossRef
2.
go back to reference Gorham LW, Stout AP. Massive osteolysis (acute spontaneous absorption of bone, phantom bone, disappearing bone); its relation to hemangiomatosis. J Bone Joint Surg Am. 1955;37-A(5):985–1004.CrossRef Gorham LW, Stout AP. Massive osteolysis (acute spontaneous absorption of bone, phantom bone, disappearing bone); its relation to hemangiomatosis. J Bone Joint Surg Am. 1955;37-A(5):985–1004.CrossRef
3.
4.
go back to reference Tena-Sanabria ME, Jesus-Mejenes LY, Fuentes-Herrera G, Alvarez-Martinez FA, Victorio-Garcia NP, Nunez-Enriquez JC. A report of two children with Gorham-Stout disease. BMC Pediatr. 2019;19(1):206.CrossRef Tena-Sanabria ME, Jesus-Mejenes LY, Fuentes-Herrera G, Alvarez-Martinez FA, Victorio-Garcia NP, Nunez-Enriquez JC. A report of two children with Gorham-Stout disease. BMC Pediatr. 2019;19(1):206.CrossRef
5.
go back to reference Cramer SL, Wei S, Merrow AC, Pressey JG. Gorham-Stout disease successfully treated with sirolimus and zoledronic acid therapy. J Pediat Hematol Onc. 2016;38(3):E129–32.CrossRef Cramer SL, Wei S, Merrow AC, Pressey JG. Gorham-Stout disease successfully treated with sirolimus and zoledronic acid therapy. J Pediat Hematol Onc. 2016;38(3):E129–32.CrossRef
6.
go back to reference Araujo CA, Carvalho B, Carvalho I, et al. Management of Gorham-stout disease complicated by chylothorax, haemothorax and chylopericardium. Interact Cardiovasc Thorac Surg. 2017;25:i63.CrossRef Araujo CA, Carvalho B, Carvalho I, et al. Management of Gorham-stout disease complicated by chylothorax, haemothorax and chylopericardium. Interact Cardiovasc Thorac Surg. 2017;25:i63.CrossRef
7.
go back to reference Garcia V, Alonso-Claudio G, Gomez-Hernandez MT, Chamorro AJ. Sirolimus on Gorham-Stout disease. Case report. Colomb Med (Cali). 2016;47(4):213–6.CrossRef Garcia V, Alonso-Claudio G, Gomez-Hernandez MT, Chamorro AJ. Sirolimus on Gorham-Stout disease. Case report. Colomb Med (Cali). 2016;47(4):213–6.CrossRef
8.
go back to reference Mohammad N, Che Daud CZ, Zainuddin H, Kassim A, Kunaseelan S. Gorham-stout disease-two case reports. Pediatr Pulmonol. 2019;54:S133. Mohammad N, Che Daud CZ, Zainuddin H, Kassim A, Kunaseelan S. Gorham-stout disease-two case reports. Pediatr Pulmonol. 2019;54:S133.
9.
go back to reference Colin GM, McKinster CD, Romero MTG. Cutaneous lymphatic malformations in disappearing bone disease (Gorham stout). A case report. Pediatr Dermatol. 2017;34:S206–7.CrossRef Colin GM, McKinster CD, Romero MTG. Cutaneous lymphatic malformations in disappearing bone disease (Gorham stout). A case report. Pediatr Dermatol. 2017;34:S206–7.CrossRef
10.
go back to reference Cakir FB, Khalif F, Ziyade S, Kutlu ON, Elmadag M. Gorham-stout syndrome with massive pleural effusion responsive to sirolimus. Pediatr Blood Cancer. 2016;63:S236. Cakir FB, Khalif F, Ziyade S, Kutlu ON, Elmadag M. Gorham-stout syndrome with massive pleural effusion responsive to sirolimus. Pediatr Blood Cancer. 2016;63:S236.
11.
go back to reference Wei D, Wang T. Gorham-stout syndrome (vanishing bone disease): a case of a rare entity. Am J Clin Pathol. 2018;150:S25–6. Wei D, Wang T. Gorham-stout syndrome (vanishing bone disease): a case of a rare entity. Am J Clin Pathol. 2018;150:S25–6.
12.
go back to reference Hall NS, Carpenter SL. Gorham’s disease: a case of vanishing ribs and its effective treatment with sirolimus. Blood. 2014;124(21). Hall NS, Carpenter SL. Gorham’s disease: a case of vanishing ribs and its effective treatment with sirolimus. Blood. 2014;124(21).
13.
go back to reference Gordon KD, Mortimer PS. Progressive lymphangiomatosis and Gorham’s disease: case report and clinical implications. Lymphat Res Biol. 2011;9(4):201–4.CrossRef Gordon KD, Mortimer PS. Progressive lymphangiomatosis and Gorham’s disease: case report and clinical implications. Lymphat Res Biol. 2011;9(4):201–4.CrossRef
14.
go back to reference Mo AZ, Trenor CC 3rd, Hedequist DJ. Sirolimus therapy as perioperative treatment of Gorham-Stout disease in the thoracic spine: a case report. JBJS Case Connect. 2018;8(3):e70.CrossRef Mo AZ, Trenor CC 3rd, Hedequist DJ. Sirolimus therapy as perioperative treatment of Gorham-Stout disease in the thoracic spine: a case report. JBJS Case Connect. 2018;8(3):e70.CrossRef
15.
go back to reference Nozawa A, Ozeki M, Hori T, Kato H, Ohe N, Fukao T. Fatal progression of Gorham-Stout disease with skull base osteomyelitis and lateral medullary syndrome. Intern Med. 2019;58(13):1929–33.CrossRef Nozawa A, Ozeki M, Hori T, Kato H, Ohe N, Fukao T. Fatal progression of Gorham-Stout disease with skull base osteomyelitis and lateral medullary syndrome. Intern Med. 2019;58(13):1929–33.CrossRef
16.
go back to reference Suero Molina EJ, Niederstadt T, Ruland V, et al. Cerebrospinal fluid leakage in Gorham-Stout disease due to dura mater involvement after progression of an osteolytic lesion in the thoracic spine. J Neurosurg Spine. 2014;21(6):956–60.CrossRef Suero Molina EJ, Niederstadt T, Ruland V, et al. Cerebrospinal fluid leakage in Gorham-Stout disease due to dura mater involvement after progression of an osteolytic lesion in the thoracic spine. J Neurosurg Spine. 2014;21(6):956–60.CrossRef
17.
go back to reference Cho S, Kang SR, Lee BH, Choi S. Chylous manifestations and management of Gorham-Stout syndrome. Korean J Thorac Cardiovasc Surg. 2019;52(1):44–6.CrossRef Cho S, Kang SR, Lee BH, Choi S. Chylous manifestations and management of Gorham-Stout syndrome. Korean J Thorac Cardiovasc Surg. 2019;52(1):44–6.CrossRef
18.
go back to reference Elluru RG, Balakrishnan K, Padua HM. Lymphatic malformations: diagnosis and management. Semin Pediatr Surg. 2014;23(4):178–85.CrossRef Elluru RG, Balakrishnan K, Padua HM. Lymphatic malformations: diagnosis and management. Semin Pediatr Surg. 2014;23(4):178–85.CrossRef
19.
go back to reference Ozeki M, Fukao T. Generalized lymphatic anomaly and Gorham-Stout disease: overview and recent insights. Adv Wound Care (New Rochelle). 2019;8(6):230–45.CrossRef Ozeki M, Fukao T. Generalized lymphatic anomaly and Gorham-Stout disease: overview and recent insights. Adv Wound Care (New Rochelle). 2019;8(6):230–45.CrossRef
21.
go back to reference Hagendoorn J, Yock TI, Borel Rinkes IH, Padera TP, Ebb DH. Novel molecular pathways in Gorham disease: implications for treatment. Pediatr Blood Cancer. 2014;61(3):401–6.CrossRef Hagendoorn J, Yock TI, Borel Rinkes IH, Padera TP, Ebb DH. Novel molecular pathways in Gorham disease: implications for treatment. Pediatr Blood Cancer. 2014;61(3):401–6.CrossRef
22.
go back to reference Franco-Barrera MJ, Zavala-Cerna MG, Aguilar-Portillo G, et al. Gorham-Stout disease: a clinical case report and immunological mechanisms in bone erosion. Clin Rev Allergy Immunol. 2017;52(1):125–32.CrossRef Franco-Barrera MJ, Zavala-Cerna MG, Aguilar-Portillo G, et al. Gorham-Stout disease: a clinical case report and immunological mechanisms in bone erosion. Clin Rev Allergy Immunol. 2017;52(1):125–32.CrossRef
23.
go back to reference Ricci KW, Hammill AM, Mobberley-Schuman P, et al. Efficacy of systemic sirolimus in the treatment of generalized lymphatic anomaly and Gorham-Stout disease. Pediatr Blood Cancer. 2019;66(5):e27614.CrossRef Ricci KW, Hammill AM, Mobberley-Schuman P, et al. Efficacy of systemic sirolimus in the treatment of generalized lymphatic anomaly and Gorham-Stout disease. Pediatr Blood Cancer. 2019;66(5):e27614.CrossRef
24.
go back to reference Ozeki M, Asada R, Saito AM, et al. Efficacy and safety of sirolimus treatment for intractable lymphatic anomalies: a study protocol for an open-label, single-arm, multicenter, prospective study (SILA). Regen Ther. 2019;10:84–91.CrossRef Ozeki M, Asada R, Saito AM, et al. Efficacy and safety of sirolimus treatment for intractable lymphatic anomalies: a study protocol for an open-label, single-arm, multicenter, prospective study (SILA). Regen Ther. 2019;10:84–91.CrossRef
25.
go back to reference Adams DM, Trenor CC 3rd, Hammill AM, et al. Efficacy and safety of Sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;137(2):e20153257.CrossRef Adams DM, Trenor CC 3rd, Hammill AM, et al. Efficacy and safety of Sirolimus in the treatment of complicated vascular anomalies. Pediatrics. 2016;137(2):e20153257.CrossRef
26.
go back to reference Baluk P, Yao LC, Flores JC, Choi D, Hong YK, McDonald DM. Rapamycin reversal of VEGF-C-driven lymphatic anomalies in the respiratory tract. JCI Insight. 2017;2(16):e90103.CrossRef Baluk P, Yao LC, Flores JC, Choi D, Hong YK, McDonald DM. Rapamycin reversal of VEGF-C-driven lymphatic anomalies in the respiratory tract. JCI Insight. 2017;2(16):e90103.CrossRef
27.
go back to reference Triana P, Dore M, Cerezo VN, et al. Sirolimus in the treatment of vascular anomalies. Eur J Pediatr Surg. 2017;27(1):86–90.PubMed Triana P, Dore M, Cerezo VN, et al. Sirolimus in the treatment of vascular anomalies. Eur J Pediatr Surg. 2017;27(1):86–90.PubMed
Metadata
Title
Gorham-Stout disease successfully treated with sirolimus (rapamycin): a case report and review of the literature
Authors
Yu Liang
Ruicheng Tian
Jing Wang
Yuhua Shan
Hongxiang Gao
Chenjie Xie
Jingjing Li
Min Xu
Song Gu
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03540-7

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue