Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2020

Open Access 01-12-2020 | Research article

How to improve the safety of bicortical pedicle screw insertion in the thoracolumbar vertebrae: analysis base on three-dimensional CT reconstruction of patients in the prone position

Authors: Chao Xu, Qingxian Hou, Yanchen CHU, Xiuling Huang, Wenjiu Yang, Jinglong Ma, Zhijie Wang

Published in: BMC Musculoskeletal Disorders | Issue 1/2020

Login to get access

Abstract

Background

Through the comparison of three-dimensional CT reconstruction between the supine position and the prone position, the relative position of thoracolumbar great vessels and vertebral body was studied, and the shortest safe distance between them was measured to improve the safety of bicortical pedicle screw insertion and reduce the risk of vascular injury.

Methods

Forty adults were selected to participate the research. Three-dimensional reconstruction of thoracolumbar (T9-L3) CT was performed in the prone position and the supine position. The relative distance between the Aorta/Inferior Vena Cava (IVC) and vertebral body was obtained as AVD/VVD respectively. The relative angle of the Aorta/ IVC and the vertebral body was calculated as ∠AOY/∠VOY. Self-controlled experiments were carried out in the prone and the supine positions, and the data obtained were analyzed using SPSS 22.0 statistical software.

Results

The AVD of the prone position and the supine position was the shortest at T12 (3.18 ± 0.68 mm), but the difference was not statistically significant. The aorta of the T9-L3 segment was shifted from the anterolateral to the anteromedial. The ∠AOY of the other groups differed significantly between the prone and supine positions in all vertebrae except T12 and L1 (P < 0.05), and the aorta in the prone position was more anteromedial than that of supine position.
With regard to VVD/∠VOY, there was no significant difference between the prone and supine positions (P ≥ 0.05), and the minimum VVD of L3 segment is greater than 5.4 mm. The IVC has no obvious mobility and is fixed in the range of 20 ° ~ 30 ° near the midline.

Conclusion

When using bicortical anchoring of pedicle screws, it is safe to ensure that the protruding tips of the screw is less than 3 mm. Due to the mobility of the aorta in different postures and individual differences in anatomy, the prone position CT can help doctors to make better preoperative plans and decisions.
Literature
1.
go back to reference Perna F, Borghi R, Pilla F, Stefanini N, Mazzotti A, Chehrassan M. Pedicle screw insertion techniques: an update and review of the literature. Musculoskelet Surg. 2016;100(3):165–9.CrossRef Perna F, Borghi R, Pilla F, Stefanini N, Mazzotti A, Chehrassan M. Pedicle screw insertion techniques: an update and review of the literature. Musculoskelet Surg. 2016;100(3):165–9.CrossRef
2.
go back to reference Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976). 2007;32(10):1077–83.CrossRef Burval DJ, McLain RF, Milks R, Inceoglu S. Primary pedicle screw augmentation in osteoporotic lumbar vertebrae: biomechanical analysis of pedicle fixation strength. Spine (Phila Pa 1976). 2007;32(10):1077–83.CrossRef
3.
go back to reference Wang XY, Dai LY, Xu HZ, Chi YL. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation: an in vitro study. J Clin Neurosci. 2008;15(3):286–90.CrossRef Wang XY, Dai LY, Xu HZ, Chi YL. Biomechanical effect of the extent of vertebral body fracture on the thoracolumbar spine with pedicle screw fixation: an in vitro study. J Clin Neurosci. 2008;15(3):286–90.CrossRef
4.
go back to reference Le Cann S, Cachon T, Viguier E, Miladi L, Odent T, Rossi JM, Chabrand P. Pedicle screw fixation study in immature porcine spines to improve pullout resistance during animal testing. PLoS One. 2015;10(10):e0127463.CrossRef Le Cann S, Cachon T, Viguier E, Miladi L, Odent T, Rossi JM, Chabrand P. Pedicle screw fixation study in immature porcine spines to improve pullout resistance during animal testing. PLoS One. 2015;10(10):e0127463.CrossRef
5.
go back to reference Karami KJ, Buckenmeyer LE, Kiapour AM, Kelkar PS, Goel VK, Demetropoulos CK, Soo TM. Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Spinal Disord Tech. 2015;28(3):E133–9.CrossRef Karami KJ, Buckenmeyer LE, Kiapour AM, Kelkar PS, Goel VK, Demetropoulos CK, Soo TM. Biomechanical evaluation of the pedicle screw insertion depth effect on screw stability under cyclic loading and subsequent pullout. J Spinal Disord Tech. 2015;28(3):E133–9.CrossRef
6.
go back to reference Behrend C, George S, Molinari R. Biomechanical evaluation of anterior thoracic salvage screws in the osteoporotic thoracic spine. J Spinal Disord Tech. 2013;26(6):E235–9.CrossRef Behrend C, George S, Molinari R. Biomechanical evaluation of anterior thoracic salvage screws in the osteoporotic thoracic spine. J Spinal Disord Tech. 2013;26(6):E235–9.CrossRef
7.
go back to reference Bezer M, Ketenci IE, Saygi B, Kiyak G. Bicortical versus unicortical pedicle screws in direct vertebral rotation: an in vitro experimental study. J Spinal Disord Tech. 2012;25(6):E178–82.CrossRef Bezer M, Ketenci IE, Saygi B, Kiyak G. Bicortical versus unicortical pedicle screws in direct vertebral rotation: an in vitro experimental study. J Spinal Disord Tech. 2012;25(6):E178–82.CrossRef
8.
go back to reference Ponnusamy KE, Iyer S, Gupta G, Khanna AJ. Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J. 2011;11(1):54–63.CrossRef Ponnusamy KE, Iyer S, Gupta G, Khanna AJ. Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J. 2011;11(1):54–63.CrossRef
9.
go back to reference Mayer M, Stephan D, Resch H, Augat P, Auffarth A, Blocher M, Ernstbrunner L, Hitzl W, Defossez H, Rouge R, et al. Biomechanical comparison of sacral fixation characteristics of standard S1-pedicle screw fixation versus a novel constrained S1-dual-screw Anchorage in the S1-pedicle and S1-alar bone. Spine (Phila Pa 1976). 2015;40(24):1890–7.CrossRef Mayer M, Stephan D, Resch H, Augat P, Auffarth A, Blocher M, Ernstbrunner L, Hitzl W, Defossez H, Rouge R, et al. Biomechanical comparison of sacral fixation characteristics of standard S1-pedicle screw fixation versus a novel constrained S1-dual-screw Anchorage in the S1-pedicle and S1-alar bone. Spine (Phila Pa 1976). 2015;40(24):1890–7.CrossRef
10.
go back to reference Wegener B, Birkenmaier C, Fottner A, Jansson V, Durr HR. Delayed perforation of the aorta by a thoracic pedicle screw. Eur Spine J. 2008;17(Suppl 2):S351–4.CrossRef Wegener B, Birkenmaier C, Fottner A, Jansson V, Durr HR. Delayed perforation of the aorta by a thoracic pedicle screw. Eur Spine J. 2008;17(Suppl 2):S351–4.CrossRef
11.
go back to reference Prabhakar H, Bithal PK, Dash M, Chaturvedi A. Rupture of aorta and inferior vena cava during lumbar disc surgery. Acta Neurochir. 2005;147(3):327–9 discussion 329.CrossRef Prabhakar H, Bithal PK, Dash M, Chaturvedi A. Rupture of aorta and inferior vena cava during lumbar disc surgery. Acta Neurochir. 2005;147(3):327–9 discussion 329.CrossRef
12.
go back to reference Watanabe K, Yamazaki A, Hirano T, Izumi T, Sano A, Morita O, Kikuchi R, Ito T. Descending aortic injury by a thoracic pedicle screw during posterior reconstructive surgery: a case report. Spine (Phila Pa 1976). 2010;35(20):E1064–8.CrossRef Watanabe K, Yamazaki A, Hirano T, Izumi T, Sano A, Morita O, Kikuchi R, Ito T. Descending aortic injury by a thoracic pedicle screw during posterior reconstructive surgery: a case report. Spine (Phila Pa 1976). 2010;35(20):E1064–8.CrossRef
13.
go back to reference Kato M, Taneichi H, Suda K. Advantage of pedicle screw placement into the sacral promontory (Tricortical purchase) on lumbosacral fixation. J Spinal Disord Tech. 2015;28(6):E336–42.CrossRef Kato M, Taneichi H, Suda K. Advantage of pedicle screw placement into the sacral promontory (Tricortical purchase) on lumbosacral fixation. J Spinal Disord Tech. 2015;28(6):E336–42.CrossRef
14.
go back to reference Park YS, Hyun SJ, Choi HY, Kim KJ, Jahng TA. Association between bicortical screw fixation at upper instrumented vertebra and risk for upper instrumented vertebra fracture. J Neurosurg Spine. 2017;26(5):638–44.CrossRef Park YS, Hyun SJ, Choi HY, Kim KJ, Jahng TA. Association between bicortical screw fixation at upper instrumented vertebra and risk for upper instrumented vertebra fracture. J Neurosurg Spine. 2017;26(5):638–44.CrossRef
15.
go back to reference Guo HZ, Tang YC, Li YX, Yuan K, Guo DQ, Mo GY, Luo PJ, Zhou TP, Zhang SC, Liang D. the effect and safety of Polymethylmethacrylate-augmented sacral pedicle screws applied in osteoporotic spine with lumbosacral degenerative disease: a 2-year follow-up of 25 patients. World Neurosurg. 2019;121:e404–10.CrossRef Guo HZ, Tang YC, Li YX, Yuan K, Guo DQ, Mo GY, Luo PJ, Zhou TP, Zhang SC, Liang D. the effect and safety of Polymethylmethacrylate-augmented sacral pedicle screws applied in osteoporotic spine with lumbosacral degenerative disease: a 2-year follow-up of 25 patients. World Neurosurg. 2019;121:e404–10.CrossRef
16.
go back to reference Gazzeri R, Roperto R, Fiore C. Surgical treatment of degenerative and traumatic spinal diseases with expandable screws in patients with osteoporosis: 2-year follow-up clinical study. J Neurosurg-Spine. 2016;25(5):610–9.CrossRef Gazzeri R, Roperto R, Fiore C. Surgical treatment of degenerative and traumatic spinal diseases with expandable screws in patients with osteoporosis: 2-year follow-up clinical study. J Neurosurg-Spine. 2016;25(5):610–9.CrossRef
17.
go back to reference Demir T. A new alternative to expandable pedicle screws: expandable poly-ether-ether-ketone shell. Proc Inst Mech Eng H J Eng Med. 2015;229(5):386–94.CrossRef Demir T. A new alternative to expandable pedicle screws: expandable poly-ether-ether-ketone shell. Proc Inst Mech Eng H J Eng Med. 2015;229(5):386–94.CrossRef
18.
go back to reference Aycan MF, Yaman ME, Usta Y, Demir T, Tolunay T. Investigation of toggling effect on pullout performance of pedicle screws. Proc Inst Mech Eng H J Eng Med. 2018;232(4):395–402.CrossRef Aycan MF, Yaman ME, Usta Y, Demir T, Tolunay T. Investigation of toggling effect on pullout performance of pedicle screws. Proc Inst Mech Eng H J Eng Med. 2018;232(4):395–402.CrossRef
19.
go back to reference Hotchkiss WR, Schwend RM, Bosch PP, Edgar HJ, Young BN. Defining the differences in transverse plane trajectories for thoracic pedicle screw insertion: anatomic versus medial. Spine Deform. 2016;4(1):22–6.CrossRef Hotchkiss WR, Schwend RM, Bosch PP, Edgar HJ, Young BN. Defining the differences in transverse plane trajectories for thoracic pedicle screw insertion: anatomic versus medial. Spine Deform. 2016;4(1):22–6.CrossRef
20.
go back to reference Varghese V, Saravana Kumar G, Krishnan V. Effect of various factors on pull out strength of pedicle screw in normal and osteoporotic cancellous bone models. Med Eng Phys. 2017;40:28–38.CrossRef Varghese V, Saravana Kumar G, Krishnan V. Effect of various factors on pull out strength of pedicle screw in normal and osteoporotic cancellous bone models. Med Eng Phys. 2017;40:28–38.CrossRef
21.
go back to reference Milcan A, Ayan I, Zeren A, Sinmazcelik T, Yilmaz A, Zeren M, Kuyurtar F. Evaluation of cyanoacrylate augmentation of transpedicular screw pullout strength. J Spinal Disord Tech. 2005;18(6):511–4.CrossRef Milcan A, Ayan I, Zeren A, Sinmazcelik T, Yilmaz A, Zeren M, Kuyurtar F. Evaluation of cyanoacrylate augmentation of transpedicular screw pullout strength. J Spinal Disord Tech. 2005;18(6):511–4.CrossRef
22.
go back to reference Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichiya M, Ikeda M. Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976). 1997;22(21):2504–9 discussion 2510.CrossRef Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichiya M, Ikeda M. Structural characteristics of the pedicle and its role in screw stability. Spine (Phila Pa 1976). 1997;22(21):2504–9 discussion 2510.CrossRef
23.
go back to reference Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, Spencer CW. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res. 1986;203:99–112. Zindrick MR, Wiltse LL, Widell EH, Thomas JC, Holland WR, Field BT, Spencer CW. A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine. Clin Orthop Relat Res. 1986;203:99–112.
24.
go back to reference Krag MH, Beynnon BD, Pope MH, DeCoster TA. Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength. J Spinal Disord. 1988;1(4):287–94.CrossRef Krag MH, Beynnon BD, Pope MH, DeCoster TA. Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw-vertebra interface strength. J Spinal Disord. 1988;1(4):287–94.CrossRef
25.
go back to reference Huitema GC, Cornips EM, Castelijns MH, van Ooij A, van Santbrink H, van Rhijn LW. The position of the aorta relative to the spine: is it mobile or not? Spine (Phila Pa 1976). 2007;32(12):1259–64.CrossRef Huitema GC, Cornips EM, Castelijns MH, van Ooij A, van Santbrink H, van Rhijn LW. The position of the aorta relative to the spine: is it mobile or not? Spine (Phila Pa 1976). 2007;32(12):1259–64.CrossRef
26.
go back to reference Vaccaro AR, Kepler CK, Rihn JA, Suzuki H, Ratliff JK, Harrop JS, Morrison WB, Limthongkul W, Albert TJ. Anatomical relationships of the anterior blood vessels to the lower lumbar intervertebral discs: analysis based on magnetic resonance imaging of patients in the prone position. J Bone Joint Surg Am. 2012;94(12):1088–94.CrossRef Vaccaro AR, Kepler CK, Rihn JA, Suzuki H, Ratliff JK, Harrop JS, Morrison WB, Limthongkul W, Albert TJ. Anatomical relationships of the anterior blood vessels to the lower lumbar intervertebral discs: analysis based on magnetic resonance imaging of patients in the prone position. J Bone Joint Surg Am. 2012;94(12):1088–94.CrossRef
27.
go back to reference Sarwahi V, Payares M, Wendolowski S, Gecelter R, Maguire K, Wang D, Thornhill B, Amaral T. Pedicle screw safety: how much anterior breach is safe?: a cadaveric and CT-based study. Spine (Phila Pa 1976). 2017;42(22):E1305–10.CrossRef Sarwahi V, Payares M, Wendolowski S, Gecelter R, Maguire K, Wang D, Thornhill B, Amaral T. Pedicle screw safety: how much anterior breach is safe?: a cadaveric and CT-based study. Spine (Phila Pa 1976). 2017;42(22):E1305–10.CrossRef
28.
go back to reference Faro FD, Farnsworth CL, Shapiro GS, Mohamad F, White KK, Breisch E, Mahar AT, Tomlinson T, Bawa M, Gomez M, et al. Thoracic vertebral screw impingement on the aorta in an in vivo bovine model. Spine (Phila Pa 1976). 2005;30(21):2406–13.CrossRef Faro FD, Farnsworth CL, Shapiro GS, Mohamad F, White KK, Breisch E, Mahar AT, Tomlinson T, Bawa M, Gomez M, et al. Thoracic vertebral screw impingement on the aorta in an in vivo bovine model. Spine (Phila Pa 1976). 2005;30(21):2406–13.CrossRef
29.
go back to reference Foxx KC, Kwak RC, Latzman JM, Samadani U. A retrospective analysis of pedicle screws in contact with the great vessels. J Neurosurg Spine. 2010;13(3):403–6.CrossRef Foxx KC, Kwak RC, Latzman JM, Samadani U. A retrospective analysis of pedicle screws in contact with the great vessels. J Neurosurg Spine. 2010;13(3):403–6.CrossRef
30.
go back to reference Sarwahi V, Suggs W, Wollowick AL, Kulkarni PM, Lo Y, Amaral TD, Thornhill B. Pedicle screws adjacent to the great vessels or viscera: a study of 2132 pedicle screws in pediatric spine deformity. J Spinal Disord Tech. 2014;27(2):64–9.CrossRef Sarwahi V, Suggs W, Wollowick AL, Kulkarni PM, Lo Y, Amaral TD, Thornhill B. Pedicle screws adjacent to the great vessels or viscera: a study of 2132 pedicle screws in pediatric spine deformity. J Spinal Disord Tech. 2014;27(2):64–9.CrossRef
31.
go back to reference Sarwahi V, Amaral T, Wendolowski S, Gecelter R, Sugarman E, Lo Y, Wang D, Thornhill B. MRIs are less accurate tools for the Most critically worrisome pedicles compared to CT scans. Spine Deform. 2016;4(6):400–6.CrossRef Sarwahi V, Amaral T, Wendolowski S, Gecelter R, Sugarman E, Lo Y, Wang D, Thornhill B. MRIs are less accurate tools for the Most critically worrisome pedicles compared to CT scans. Spine Deform. 2016;4(6):400–6.CrossRef
32.
go back to reference Liu L, Wang H, Wang J, Wang Q, Cheng S, Li Y, Jin W, Wang Z, Zhou Q. The methods for inserting lumbar bicortical pedicle screws from the anatomical perspective of the prevertebral great vessels. BMC Musculoskelet Disord. 2019;20(1):380.CrossRef Liu L, Wang H, Wang J, Wang Q, Cheng S, Li Y, Jin W, Wang Z, Zhou Q. The methods for inserting lumbar bicortical pedicle screws from the anatomical perspective of the prevertebral great vessels. BMC Musculoskelet Disord. 2019;20(1):380.CrossRef
Metadata
Title
How to improve the safety of bicortical pedicle screw insertion in the thoracolumbar vertebrae: analysis base on three-dimensional CT reconstruction of patients in the prone position
Authors
Chao Xu
Qingxian Hou
Yanchen CHU
Xiuling Huang
Wenjiu Yang
Jinglong Ma
Zhijie Wang
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2020
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-020-03473-1

Other articles of this Issue 1/2020

BMC Musculoskeletal Disorders 1/2020 Go to the issue