Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2019

Open Access 01-12-2019 | Research article

Wearable systems for shoulder kinematics assessment: a systematic review

Authors: Arianna Carnevale, Umile Giuseppe Longo, Emiliano Schena, Carlo Massaroni, Daniela Lo Presti, Alessandra Berton, Vincenzo Candela, Vincenzo Denaro

Published in: BMC Musculoskeletal Disorders | Issue 1/2019

Login to get access

Abstract

Background

Wearable sensors are acquiring more and more influence in diagnostic and rehabilitation field to assess motor abilities of people with neurological or musculoskeletal impairments. The aim of this systematic literature review is to analyze the wearable systems for monitoring shoulder kinematics and their applicability in clinical settings and rehabilitation.

Methods

A comprehensive search of PubMed, Medline, Google Scholar and IEEE Xplore was performed and results were included up to July 2019. All studies concerning wearable sensors to assess shoulder kinematics were retrieved.

Results

Seventy-three studies were included because they have fulfilled the inclusion criteria. The results showed that magneto and/or inertial sensors are the most used. Wearable sensors measuring upper limb and/or shoulder kinematics have been proposed to be applied in patients with different pathological conditions such as stroke, multiple sclerosis, osteoarthritis, rotator cuff tear. Sensors placement and method of attachment were broadly heterogeneous among the examined studies.

Conclusions

Wearable systems are a promising solution to provide quantitative and meaningful clinical information about progress in a rehabilitation pathway and to extrapolate meaningful parameters in the diagnosis of shoulder pathologies. There is a strong need for development of this novel technologies which undeniably serves in shoulder evaluation and therapy.
Literature
1.
go back to reference Cutti AG, Veeger HE. Shoulder biomechanics: today’s consensus and tomorrow’s perspectives. Med Biol Eng Comput. 2009;47(5):463–6.PubMedCrossRef Cutti AG, Veeger HE. Shoulder biomechanics: today’s consensus and tomorrow’s perspectives. Med Biol Eng Comput. 2009;47(5):463–6.PubMedCrossRef
2.
go back to reference Longo UG, Vasta S, Maffulli N, Denaro V. Scoring systems for the functional assessment of patients with rotator cuff pathology. Sports Med Arthrosc Rev. 2011;19(3):310–20.PubMedCrossRef Longo UG, Vasta S, Maffulli N, Denaro V. Scoring systems for the functional assessment of patients with rotator cuff pathology. Sports Med Arthrosc Rev. 2011;19(3):310–20.PubMedCrossRef
3.
go back to reference Longo UG, Berton A, Ahrens PM, Maffulli N, Denaro V. Clinical tests for the diagnosis of rotator cuff disease. Sports Med Arthrosc Rev. 2011;19(3):266–78.PubMedCrossRef Longo UG, Berton A, Ahrens PM, Maffulli N, Denaro V. Clinical tests for the diagnosis of rotator cuff disease. Sports Med Arthrosc Rev. 2011;19(3):266–78.PubMedCrossRef
4.
go back to reference Longo UG, Saris D, Poolman RW, Berton A, Denaro V. Instruments to assess patients with rotator cuff pathology: a systematic review of measurement properties. Knee Surg Sports Traumatol Arthrosc. 2012;20(10):1961–70.PubMedCrossRef Longo UG, Saris D, Poolman RW, Berton A, Denaro V. Instruments to assess patients with rotator cuff pathology: a systematic review of measurement properties. Knee Surg Sports Traumatol Arthrosc. 2012;20(10):1961–70.PubMedCrossRef
5.
go back to reference Duc C, Farron A, Pichonnaz C, Jolles BM, Bassin JP, Aminian K. Distribution of arm velocity and frequency of arm usage during daily activity: objective outcome evaluation after shoulder surgery. Gait Posture. 2013;38(2):247–52.PubMedCrossRef Duc C, Farron A, Pichonnaz C, Jolles BM, Bassin JP, Aminian K. Distribution of arm velocity and frequency of arm usage during daily activity: objective outcome evaluation after shoulder surgery. Gait Posture. 2013;38(2):247–52.PubMedCrossRef
6.
go back to reference Langohr GDG, Haverstock JP, Johnson JA, Athwal GS. Comparing daily shoulder motion and frequency after anatomic and reverse shoulder arthroplasty. J Shoulder Elb Surg. 2018;27(2):325–32.CrossRef Langohr GDG, Haverstock JP, Johnson JA, Athwal GS. Comparing daily shoulder motion and frequency after anatomic and reverse shoulder arthroplasty. J Shoulder Elb Surg. 2018;27(2):325–32.CrossRef
7.
go back to reference Repnik E, Puh U, Goljar N, Munih M, Mihelj M. Using Inertial Measurement Units and Electromyography to Quantify Movement during Action Research Arm Test Execution. Sensors (Basel). 2018;18:9.CrossRef Repnik E, Puh U, Goljar N, Munih M, Mihelj M. Using Inertial Measurement Units and Electromyography to Quantify Movement during Action Research Arm Test Execution. Sensors (Basel). 2018;18:9.CrossRef
8.
go back to reference Bartalesi R, Lorussi F, Tesconi M, Tognetti A, Zupone G, Rossi DD: Wearable kinesthetic system for capturing and classifying upper limb gesture. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems World Haptics Conference: 18–20 March 2005 2005; 2005: 535–536. Bartalesi R, Lorussi F, Tesconi M, Tognetti A, Zupone G, Rossi DD: Wearable kinesthetic system for capturing and classifying upper limb gesture. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems World Haptics Conference: 18–20 March 2005 2005; 2005: 535–536.
9.
go back to reference Massaroni C, Di Tocco J, Presti DL, Schena E, Bressi F, Bravi M, Miccinilli S, Sterzi S, Longo UG, Berton A: Influence of motion artifacts on a smart garment for monitoring respiratory rate. In: 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA): 2019: IEEE; 2019: 1–6. Massaroni C, Di Tocco J, Presti DL, Schena E, Bressi F, Bravi M, Miccinilli S, Sterzi S, Longo UG, Berton A: Influence of motion artifacts on a smart garment for monitoring respiratory rate. In: 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA): 2019: IEEE; 2019: 1–6.
10.
go back to reference Presti DL, Massaroni C, Di Tocco J, Schena E, Formica D, Caponero MA, Longo UG, Carnevale A, D’Abbraccio J, Massari L: Cardiac monitoring with a smart textile based on polymer-encapsulated FBG: influence of sensor positioning. In: 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA): 2019: IEEE; 2019: 1–6. Presti DL, Massaroni C, Di Tocco J, Schena E, Formica D, Caponero MA, Longo UG, Carnevale A, D’Abbraccio J, Massari L: Cardiac monitoring with a smart textile based on polymer-encapsulated FBG: influence of sensor positioning. In: 2019 IEEE International Symposium on Medical Measurements and Applications (MeMeA): 2019: IEEE; 2019: 1–6.
11.
go back to reference Esfahani MIM, Nussbaum MA. A “smart” undershirt for tracking upper body motions: task classification and angle estimation. IEEE Sensors J. 2018;18(18):7650–8.CrossRef Esfahani MIM, Nussbaum MA. A “smart” undershirt for tracking upper body motions: task classification and angle estimation. IEEE Sensors J. 2018;18(18):7650–8.CrossRef
12.
go back to reference Jordan K, Haywood KL, Dziedzic K, Garratt AM, Jones PW, Ong BN, Dawes PT. Assessment of the 3-dimensional Fastrak measurement system in measuring range of motion in ankylosing spondylitis. J Rheumatol. 2004;31(11):2207–15.PubMed Jordan K, Haywood KL, Dziedzic K, Garratt AM, Jones PW, Ong BN, Dawes PT. Assessment of the 3-dimensional Fastrak measurement system in measuring range of motion in ankylosing spondylitis. J Rheumatol. 2004;31(11):2207–15.PubMed
13.
go back to reference Illyés A, Kiss RM. Method for determining the spatial position of the shoulder with ultrasound-based motion analyzer. J Electromyogr Kinesiol. 2006;16(1):79–88.PubMedCrossRef Illyés A, Kiss RM. Method for determining the spatial position of the shoulder with ultrasound-based motion analyzer. J Electromyogr Kinesiol. 2006;16(1):79–88.PubMedCrossRef
14.
go back to reference Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80–5.PubMedCrossRef Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016;47:80–5.PubMedCrossRef
15.
go back to reference Pérez R, Costa Ú, Torrent M, Solana J, Opisso E, Cáceres C, Tormos JM, Medina J, Gómez EJ. Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes. Sensors (Basel). 2010;10(12):10733–51.CrossRef Pérez R, Costa Ú, Torrent M, Solana J, Opisso E, Cáceres C, Tormos JM, Medina J, Gómez EJ. Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes. Sensors (Basel). 2010;10(12):10733–51.CrossRef
16.
go back to reference Lambrecht JM, Kirsch RF. Miniature low-power inertial sensors: promising technology for implantable motion capture systems. IEEE Trans Neural Syst Rehabil Eng. 2014;22(6):1138–47.PubMedCrossRef Lambrecht JM, Kirsch RF. Miniature low-power inertial sensors: promising technology for implantable motion capture systems. IEEE Trans Neural Syst Rehabil Eng. 2014;22(6):1138–47.PubMedCrossRef
17.
go back to reference Fantozzi S, Giovanardi A, Magalhães FA, Di Michele R, Cortesi M, Gatta G. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. J Sports Sci. 2016;34(11):1073–80.PubMedCrossRef Fantozzi S, Giovanardi A, Magalhães FA, Di Michele R, Cortesi M, Gatta G. Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. J Sports Sci. 2016;34(11):1073–80.PubMedCrossRef
18.
go back to reference Presti DL, Massaroni C, Formica D, Saccomandi P, Giurazza F, Caponero MA, Schena E. Smart textile based on 12 fiber Bragg gratings array for vital signs monitoring. IEEE Sensors J. 2017;17(18):6037–43.CrossRef Presti DL, Massaroni C, Formica D, Saccomandi P, Giurazza F, Caponero MA, Schena E. Smart textile based on 12 fiber Bragg gratings array for vital signs monitoring. IEEE Sensors J. 2017;17(18):6037–43.CrossRef
19.
go back to reference Massaroni C, Carraro E, Vianello A, Miccinilli S, Morrone M, Levai IK, Schena E, Saccomandi P, Sterzi S, Dickinson JW, et al. Optoelectronic Plethysmography in clinical practice and research: a review. Respiration. 2017;93(5):339–54.PubMedCrossRef Massaroni C, Carraro E, Vianello A, Miccinilli S, Morrone M, Levai IK, Schena E, Saccomandi P, Sterzi S, Dickinson JW, et al. Optoelectronic Plethysmography in clinical practice and research: a review. Respiration. 2017;93(5):339–54.PubMedCrossRef
20.
go back to reference Massaroni C, Venanzi C, Silvatti AP, Lo Presti D, Saccomandi P, Formica D, Giurazza F, Caponero MA, Schena E. Smart textile for respiratory monitoring and thoraco-abdominal motion pattern evaluation. J Biophotonics. 2018;11(5):e201700263.PubMedCrossRef Massaroni C, Venanzi C, Silvatti AP, Lo Presti D, Saccomandi P, Formica D, Giurazza F, Caponero MA, Schena E. Smart textile for respiratory monitoring and thoraco-abdominal motion pattern evaluation. J Biophotonics. 2018;11(5):e201700263.PubMedCrossRef
21.
go back to reference de Lucena DS, Stoller O, Rowe JB, Chan V, Reinkensmeyer DJ. Wearable sensing for rehabilitation after stroke: bimanual jerk asymmetry encodes unique information about the variability of upper extremity recovery. IEEE Int Conf Rehabil Robot. 2017;2017:1603–8.PubMed de Lucena DS, Stoller O, Rowe JB, Chan V, Reinkensmeyer DJ. Wearable sensing for rehabilitation after stroke: bimanual jerk asymmetry encodes unique information about the variability of upper extremity recovery. IEEE Int Conf Rehabil Robot. 2017;2017:1603–8.PubMed
22.
go back to reference Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. Journal of neuroengineering and rehabilitation. 2012;9:21.PubMedPubMedCentralCrossRef Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. Journal of neuroengineering and rehabilitation. 2012;9:21.PubMedPubMedCentralCrossRef
23.
go back to reference Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors (Basel). 2014;14(2):3362–94.CrossRef Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait analysis methods: an overview of wearable and non-wearable systems, highlighting clinical applications. Sensors (Basel). 2014;14(2):3362–94.CrossRef
24.
go back to reference Bergmann JH, Chandaria V, McGregor A. Wearable and implantable sensors: the patient's perspective. Sensors (Basel). 2012;12(12):16695–709.CrossRef Bergmann JH, Chandaria V, McGregor A. Wearable and implantable sensors: the patient's perspective. Sensors (Basel). 2012;12(12):16695–709.CrossRef
25.
go back to reference Caldani L, Pacelli M, Farina D, Paradiso R. E-textile platforms for rehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5181–4. Caldani L, Pacelli M, Farina D, Paradiso R. E-textile platforms for rehabilitation. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:5181–4.
26.
go back to reference Wang Q, De Baets L, Timmermans A, Chen W, Giacolini L, Matheve T, Markopoulos P. Motor Control Training for the Shoulder with Smart Garments. Sensors (Basel). 2017;17:7. Wang Q, De Baets L, Timmermans A, Chen W, Giacolini L, Matheve T, Markopoulos P. Motor Control Training for the Shoulder with Smart Garments. Sensors (Basel). 2017;17:7.
27.
go back to reference Burns DM, Leung N, Hardisty M, Whyne CM, Henry P, McLachlin S. Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch. Physiol Meas. 2018;39(7):075007.PubMedCrossRef Burns DM, Leung N, Hardisty M, Whyne CM, Henry P, McLachlin S. Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch. Physiol Meas. 2018;39(7):075007.PubMedCrossRef
28.
go back to reference Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.PubMedCrossRef Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.PubMedCrossRef
29.
go back to reference Coley B, Jolles BM, Farron A, Bourgeois A, Nussbaumer F, Pichonnaz C, Aminian K. Outcome evaluation in shoulder surgery using 3D kinematics sensors. Gait Posture. 2007;25(4):523–32.PubMedCrossRef Coley B, Jolles BM, Farron A, Bourgeois A, Nussbaumer F, Pichonnaz C, Aminian K. Outcome evaluation in shoulder surgery using 3D kinematics sensors. Gait Posture. 2007;25(4):523–32.PubMedCrossRef
30.
go back to reference Coley B, Jolles BM, Farron A, Pichonnaz C, Bassin JP, Aminian K. Estimating dominant upper-limb segments during daily activity. Gait Posture. 2008;27(3):368–75.PubMedCrossRef Coley B, Jolles BM, Farron A, Pichonnaz C, Bassin JP, Aminian K. Estimating dominant upper-limb segments during daily activity. Gait Posture. 2008;27(3):368–75.PubMedCrossRef
31.
go back to reference Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, Farron A. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elb Surg. 2011;20(7):1074–81.CrossRef Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin JP, Farron A. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elb Surg. 2011;20(7):1074–81.CrossRef
32.
go back to reference Körver RJ, Senden R, Heyligers IC, Grimm B. Objective outcome evaluation using inertial sensors in subacromial impingement syndrome: a five-year follow-up study. Physiol Meas. 2014;35(4):677–86.PubMedCrossRef Körver RJ, Senden R, Heyligers IC, Grimm B. Objective outcome evaluation using inertial sensors in subacromial impingement syndrome: a five-year follow-up study. Physiol Meas. 2014;35(4):677–86.PubMedCrossRef
33.
go back to reference van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921–31.PubMedCrossRef van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52(11):921–31.PubMedCrossRef
34.
go back to reference Pichonnaz C, Duc C, Jolles BM, Aminian K, Bassin JP, Farron A. Alteration and recovery of arm usage in daily activities after rotator cuff surgery. J Shoulder Elb Surg. 2015;24(9):1346–52.CrossRef Pichonnaz C, Duc C, Jolles BM, Aminian K, Bassin JP, Farron A. Alteration and recovery of arm usage in daily activities after rotator cuff surgery. J Shoulder Elb Surg. 2015;24(9):1346–52.CrossRef
35.
36.
go back to reference van den Noort JC, Wiertsema SH, Hekman KM, Schönhuth CP, Dekker J, Harlaar J. Measurement of scapular dyskinesis using wireless inertial and magnetic sensors: importance of scapula calibration. J Biomech. 2015;48(12):3460–8.PubMedCrossRef van den Noort JC, Wiertsema SH, Hekman KM, Schönhuth CP, Dekker J, Harlaar J. Measurement of scapular dyskinesis using wireless inertial and magnetic sensors: importance of scapula calibration. J Biomech. 2015;48(12):3460–8.PubMedCrossRef
37.
go back to reference Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput. 2008;46(2):169–78.PubMedCrossRef Cutti AG, Giovanardi A, Rocchi L, Davalli A, Sacchetti R. Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors. Med Biol Eng Comput. 2008;46(2):169–78.PubMedCrossRef
38.
go back to reference Roldán-Jiménez C, Cuesta-Vargas AI. Age-related changes analyzing shoulder kinematics by means of inertial sensors. Clin Biomech (Bristol, Avon). 2016;37:70–6.CrossRef Roldán-Jiménez C, Cuesta-Vargas AI. Age-related changes analyzing shoulder kinematics by means of inertial sensors. Clin Biomech (Bristol, Avon). 2016;37:70–6.CrossRef
39.
go back to reference Aslani N, Noroozi S, Davenport P, Hartley R, Dupac M, Sewell P. Development of a 3D workspace shoulder assessment tool incorporating electromyography and an inertial measurement unit-a preliminary study. Med Biol Eng Comput. 2018;56(6):1003–11.PubMedCrossRef Aslani N, Noroozi S, Davenport P, Hartley R, Dupac M, Sewell P. Development of a 3D workspace shoulder assessment tool incorporating electromyography and an inertial measurement unit-a preliminary study. Med Biol Eng Comput. 2018;56(6):1003–11.PubMedCrossRef
40.
go back to reference Carbonaro N, Lucchesi I, Lorusssi F, Tognetti A: Tele-monitoring and tele-rehabilitation of the shoulder muscular-skeletal diseases through wearable systems. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 18–21 July 2018 2018; 2018: 4410–4413. Carbonaro N, Lucchesi I, Lorusssi F, Tognetti A: Tele-monitoring and tele-rehabilitation of the shoulder muscular-skeletal diseases through wearable systems. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 18–21 July 2018 2018; 2018: 4410–4413.
41.
go back to reference Hurd WJ, Morrow MM, Miller EJ, Adams RA, Sperling JW, Kaufman KR. Patient-reported and objectively measured function before and after reverse shoulder Arthroplasty. J Geriatr Phys Ther. 2018;41(3):126–33.PubMedPubMedCentralCrossRef Hurd WJ, Morrow MM, Miller EJ, Adams RA, Sperling JW, Kaufman KR. Patient-reported and objectively measured function before and after reverse shoulder Arthroplasty. J Geriatr Phys Ther. 2018;41(3):126–33.PubMedPubMedCentralCrossRef
42.
go back to reference Hester T, Hughes R, Sherrill DM, Knorr B, Akay M, Stein J, Bonato P: Using wearable sensors to measure motor abilities following stroke. In: International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06): 3–5 April 2006 2006; 2006: 4 pp.-8. Hester T, Hughes R, Sherrill DM, Knorr B, Akay M, Stein J, Bonato P: Using wearable sensors to measure motor abilities following stroke. In: International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06): 3–5 April 2006 2006; 2006: 4 pp.-8.
43.
go back to reference Zhou H, Hu H, Harris ND, Hammerton J. Applications of wearable inertial sensors in estimation of upper limb movements. Biomedical Signal Processing and Control. 2006;1(1):22–32.CrossRef Zhou H, Hu H, Harris ND, Hammerton J. Applications of wearable inertial sensors in estimation of upper limb movements. Biomedical Signal Processing and Control. 2006;1(1):22–32.CrossRef
44.
go back to reference Willmann RD, Lanfermann G, Saini P, Timmermans A, te Vrugt J, Winter S. Home stroke rehabilitation for the upper limbs. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4015–8. Willmann RD, Lanfermann G, Saini P, Timmermans A, te Vrugt J, Winter S. Home stroke rehabilitation for the upper limbs. Conf Proc IEEE Eng Med Biol Soc. 2007;2007:4015–8.
45.
go back to reference Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123–33.PubMedCrossRef Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008;30(1):123–33.PubMedCrossRef
46.
go back to reference Giorgino T, Tormene P, Lorussi F, Rossi DD, Quaglini S. Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2009;17(4):409–15.PubMedCrossRef Giorgino T, Tormene P, Lorussi F, Rossi DD, Quaglini S. Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2009;17(4):409–15.PubMedCrossRef
47.
go back to reference Lee GX, Low KS, Taher T. Unrestrained measurement of arm motion based on a wearable wireless sensor network. IEEE Trans Instrum Meas. 2010;59(5):1309–17.CrossRef Lee GX, Low KS, Taher T. Unrestrained measurement of arm motion based on a wearable wireless sensor network. IEEE Trans Instrum Meas. 2010;59(5):1309–17.CrossRef
48.
go back to reference Chee Kian L, Chen I, Zhiqiang L, Yeo SH: A low cost wearable wireless sensing system for upper limb home rehabilitation. In: 2010 IEEE Conference on Robotics, Automation and Mechatronics: 28–30 June 2010 2010; 2010: 1–8. Chee Kian L, Chen I, Zhiqiang L, Yeo SH: A low cost wearable wireless sensing system for upper limb home rehabilitation. In: 2010 IEEE Conference on Robotics, Automation and Mechatronics: 28–30 June 2010 2010; 2010: 1–8.
49.
go back to reference Patel S, Hughes R, Hester T, Stein J, Akay M, Dy JG, Bonato P. A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology. Proc IEEE. 2010;98(3):450–61.CrossRef Patel S, Hughes R, Hester T, Stein J, Akay M, Dy JG, Bonato P. A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology. Proc IEEE. 2010;98(3):450–61.CrossRef
50.
go back to reference Bento VF, Cruz VT, Ribeiro DD, Cunha JPS: Towards a movement quantification system capable of automatic evaluation of upper limb motor function after neurological injury. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 30 Aug.-3 Sept. 2011 2011; 2011: 5456–5460. Bento VF, Cruz VT, Ribeiro DD, Cunha JPS: Towards a movement quantification system capable of automatic evaluation of upper limb motor function after neurological injury. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society: 30 Aug.-3 Sept. 2011 2011; 2011: 5456–5460.
51.
go back to reference Nguyen KD, Chen I, Luo Z, Yeo SH, Duh HB. A wearable sensing system for tracking and monitoring of functional arm movement. IEEE/ASME Transactions on Mechatronics. 2011;16(2):213–20.CrossRef Nguyen KD, Chen I, Luo Z, Yeo SH, Duh HB. A wearable sensing system for tracking and monitoring of functional arm movement. IEEE/ASME Transactions on Mechatronics. 2011;16(2):213–20.CrossRef
52.
go back to reference Ding ZQ, Luo ZQ, Causo A, Chen IM, Yue KX, Yeo SH, Ling KV. Inertia sensor-based guidance system for upperlimb posture correction. Med Eng Phys. 2013;35(2):269–76.PubMedCrossRef Ding ZQ, Luo ZQ, Causo A, Chen IM, Yue KX, Yeo SH, Ling KV. Inertia sensor-based guidance system for upperlimb posture correction. Med Eng Phys. 2013;35(2):269–76.PubMedCrossRef
53.
go back to reference Lee WW, Yen SC, Tay A, Zhao Z, Xu TM, Ling KK, Ng YS, Chew E, Cheong AL, Huat GK. A smartphone-centric system for the range of motion assessment in stroke patients. IEEE J Biomed Health Inform. 2014;18(6):1839–47.PubMedCrossRef Lee WW, Yen SC, Tay A, Zhao Z, Xu TM, Ling KK, Ng YS, Chew E, Cheong AL, Huat GK. A smartphone-centric system for the range of motion assessment in stroke patients. IEEE J Biomed Health Inform. 2014;18(6):1839–47.PubMedCrossRef
54.
go back to reference Bai L, Pepper MG, Yan Y, Spurgeon SK, Sakel M, Phillips M. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors. IEEE Trans Neural Syst Rehabil Eng. 2015;23(2):232–43.PubMedCrossRef Bai L, Pepper MG, Yan Y, Spurgeon SK, Sakel M, Phillips M. Quantitative assessment of upper limb motion in neurorehabilitation utilizing inertial sensors. IEEE Trans Neural Syst Rehabil Eng. 2015;23(2):232–43.PubMedCrossRef
55.
go back to reference Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic exposure variation analysis and portable inertial sensors--a validity study. Man Ther. 2016;21:241–9.PubMedCrossRef Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic exposure variation analysis and portable inertial sensors--a validity study. Man Ther. 2016;21:241–9.PubMedCrossRef
56.
go back to reference Lorussi F, Carbonaro N, De Rossi D, Tognetti A. A bi-articular model for scapular-humeral rhythm reconstruction through data from wearable sensors. J Neuroeng Rehabil. 2016;13:40.PubMedPubMedCentralCrossRef Lorussi F, Carbonaro N, De Rossi D, Tognetti A. A bi-articular model for scapular-humeral rhythm reconstruction through data from wearable sensors. J Neuroeng Rehabil. 2016;13:40.PubMedPubMedCentralCrossRef
57.
go back to reference Mazomenos EB, Biswas D, Cranny A, Rajan A, Maharatna K, Achner J, Klemke J, Jöbges M, Ortmann S, Langendörfer P. Detecting elementary arm movements by tracking upper limb joint angles with MARG sensors. IEEE Journal of Biomedical and Health Informatics. 2016;20(4):1088–99.PubMedCrossRef Mazomenos EB, Biswas D, Cranny A, Rajan A, Maharatna K, Achner J, Klemke J, Jöbges M, Ortmann S, Langendörfer P. Detecting elementary arm movements by tracking upper limb joint angles with MARG sensors. IEEE Journal of Biomedical and Health Informatics. 2016;20(4):1088–99.PubMedCrossRef
58.
go back to reference Jiang Y, Qin Y, Kim I, Wang Y: Towards an IoT-based upper limb rehabilitation assessment system. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 11–15 July 2017 2017; 2017: 2414–2417. Jiang Y, Qin Y, Kim I, Wang Y: Towards an IoT-based upper limb rehabilitation assessment system. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): 11–15 July 2017 2017; 2017: 2414–2417.
59.
go back to reference Li Y, Zhang X, Gong Y, Cheng Y, Gao X, Chen X. Motor Function Evaluation of Hemiplegic Upper-Extremities Using Data Fusion from Wearable Inertial and Surface EMG Sensors. Sensors (Basel). 2017;17:3.CrossRef Li Y, Zhang X, Gong Y, Cheng Y, Gao X, Chen X. Motor Function Evaluation of Hemiplegic Upper-Extremities Using Data Fusion from Wearable Inertial and Surface EMG Sensors. Sensors (Basel). 2017;17:3.CrossRef
60.
go back to reference Newman CJ, Bruchez R, Roches S, Jequier Gygax M, Duc C, Dadashi F, Massé F, Aminian K. Measuring upper limb function in children with hemiparesis with 3D inertial sensors. Childs Nerv Syst. 2017;33(12):2159–68.PubMedCrossRef Newman CJ, Bruchez R, Roches S, Jequier Gygax M, Duc C, Dadashi F, Massé F, Aminian K. Measuring upper limb function in children with hemiparesis with 3D inertial sensors. Childs Nerv Syst. 2017;33(12):2159–68.PubMedCrossRef
61.
go back to reference Yang X, Tan J: Tracking of Human Joints Using Twist and Exponential Map. In: 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER): 31 July-4 Aug. 2017 2017; 2017: 592–597. Yang X, Tan J: Tracking of Human Joints Using Twist and Exponential Map. In: 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER): 31 July-4 Aug. 2017 2017; 2017: 592–597.
62.
go back to reference Daunoraviciene K, Ziziene J, Griskevicius J, Pauk J, Ovcinikova A, Kizlaitiene R, Kaubrys G. Quantitative assessment of upper extremities motor function in multiple sclerosis. Technol Health Care. 2018;26(S2):647–53.PubMedCrossRef Daunoraviciene K, Ziziene J, Griskevicius J, Pauk J, Ovcinikova A, Kizlaitiene R, Kaubrys G. Quantitative assessment of upper extremities motor function in multiple sclerosis. Technol Health Care. 2018;26(S2):647–53.PubMedCrossRef
63.
go back to reference Jung H, Park J, Jeong J, Ryu T, Kim Y, Lee SI: A wearable monitoring system for at-home stroke rehabilitation exercises: A preliminary study. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI): 4–7 March 2018 2018; 2018: 13–16. Jung H, Park J, Jeong J, Ryu T, Kim Y, Lee SI: A wearable monitoring system for at-home stroke rehabilitation exercises: A preliminary study. In: 2018 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI): 4–7 March 2018 2018; 2018: 13–16.
64.
go back to reference Lin LF, Lin YJ, Lin ZH, Chuang LY, Hsu WC, Lin YH. Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study. Eur J Phys Rehabil Med. 2018;54(3):388–96.PubMed Lin LF, Lin YJ, Lin ZH, Chuang LY, Hsu WC, Lin YH. Feasibility and efficacy of wearable devices for upper limb rehabilitation in patients with chronic stroke: a randomized controlled pilot study. Eur J Phys Rehabil Med. 2018;54(3):388–96.PubMed
65.
go back to reference Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636–40.PubMedCrossRef Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012;35(4):636–40.PubMedCrossRef
66.
go back to reference Daponte P, Vito LD, Sementa C: A wireless-based home rehabilitation system for monitoring 3D movements. In: 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA): 4–5 May 2013 2013; 2013: 282–287. Daponte P, Vito LD, Sementa C: A wireless-based home rehabilitation system for monitoring 3D movements. In: 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA): 4–5 May 2013 2013; 2013: 282–287.
67.
go back to reference Daponte P, Vito LD, Sementa C: Validation of a home rehabilitation system for range of motion measurements of limb functions. In: 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA): 4–5 May 2013 2013; 2013: 288–293. Daponte P, Vito LD, Sementa C: Validation of a home rehabilitation system for range of motion measurements of limb functions. In: 2013 IEEE International Symposium on Medical Measurements and Applications (MeMeA): 4–5 May 2013 2013; 2013: 288–293.
68.
go back to reference Pan J-I, Chung H-W, Huang J-J. Intelligent shoulder joint home-based self-rehabilitation monitoring system. Int J Smart Home. 2013;7(5):395–404.CrossRef Pan J-I, Chung H-W, Huang J-J. Intelligent shoulder joint home-based self-rehabilitation monitoring system. Int J Smart Home. 2013;7(5):395–404.CrossRef
69.
go back to reference Thiemjarus S, Marukatat S, Poomchoompol P. A method for shoulder range-of-motion estimation using a single wireless sensor node. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5907–10. Thiemjarus S, Marukatat S, Poomchoompol P. A method for shoulder range-of-motion estimation using a single wireless sensor node. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:5907–10.
70.
go back to reference Rawashdeh SA, Rafeldt DA, Uhl TL, Lumpp JE: Wearable motion capture unit for shoulder injury prevention. In: 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN): 9–12 June 2015 2015; 2015: 1–6. Rawashdeh SA, Rafeldt DA, Uhl TL, Lumpp JE: Wearable motion capture unit for shoulder injury prevention. In: 2015 IEEE 12th International Conference on Wearable and Implantable Body Sensor Networks (BSN): 9–12 June 2015 2015; 2015: 1–6.
71.
go back to reference Álvarez D, Alvarez JC, González RC, López AM. Upper limb joint angle measurement in occupational health. Comput Methods Biomech Biomed Engin. 2016;19(2):159–70.PubMedCrossRef Álvarez D, Alvarez JC, González RC, López AM. Upper limb joint angle measurement in occupational health. Comput Methods Biomech Biomed Engin. 2016;19(2):159–70.PubMedCrossRef
72.
go back to reference Lee H, Cho J, Kim J: Printable skin adhesive stretch sensor for measuring multi-axis human joint angles. In: 2016 IEEE International Conference on Robotics and Automation (ICRA): 16–21 May 2016 2016; 2016: 4975–4980. Lee H, Cho J, Kim J: Printable skin adhesive stretch sensor for measuring multi-axis human joint angles. In: 2016 IEEE International Conference on Robotics and Automation (ICRA): 16–21 May 2016 2016; 2016: 4975–4980.
73.
go back to reference Tran TM, Vejarano G: Prediction of received signal strength from human joint angles in body area networks. In: 2016 International Conference on Computing, Networking and Communications (ICNC): 15–18 Feb. 2016 2016; 2016: 1–6. Tran TM, Vejarano G: Prediction of received signal strength from human joint angles in body area networks. In: 2016 International Conference on Computing, Networking and Communications (ICNC): 15–18 Feb. 2016 2016; 2016: 1–6.
74.
go back to reference Rawashdeh SA, Rafeldt DA, Uhl TL. Wearable IMU for Shoulder Injury Prevention in Overhead Sports. Sensors (Basel). 2016;16:11.CrossRef Rawashdeh SA, Rafeldt DA, Uhl TL. Wearable IMU for Shoulder Injury Prevention in Overhead Sports. Sensors (Basel). 2016;16:11.CrossRef
75.
go back to reference Wu Y, Chen K, Fu C. Natural gesture modeling and recognition approach based on joint movements and arm orientations. IEEE Sensors J. 2016;16(21):7753–61.CrossRef Wu Y, Chen K, Fu C. Natural gesture modeling and recognition approach based on joint movements and arm orientations. IEEE Sensors J. 2016;16(21):7753–61.CrossRef
76.
go back to reference Ramkumar PN, Haeberle HS, Navarro SM, Sultan AA, Mont MA, Ricchetti ET, Schickendantz MS, Iannotti JP. Mobile technology and telemedicine for shoulder range of motion: validation of a motion-based machine-learning software development kit. J Shoulder Elb Surg. 2018;27(7):1198–204.CrossRef Ramkumar PN, Haeberle HS, Navarro SM, Sultan AA, Mont MA, Ricchetti ET, Schickendantz MS, Iannotti JP. Mobile technology and telemedicine for shoulder range of motion: validation of a motion-based machine-learning software development kit. J Shoulder Elb Surg. 2018;27(7):1198–204.CrossRef
77.
go back to reference Jung Y, Kang D, Kim J: Upper body motion tracking with inertial sensors. In: 2010 IEEE International Conference on Robotics and Biomimetics: 14–18 Dec. 2010 2010; 2010: 1746-1751. Jung Y, Kang D, Kim J: Upper body motion tracking with inertial sensors. In: 2010 IEEE International Conference on Robotics and Biomimetics: 14–18 Dec. 2010 2010; 2010: 1746-1751.
78.
go back to reference El-Gohary M, Holmstrom L, Huisinga J, King E, McNames J, Horak F. Upper limb joint angle tracking with inertial sensors. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5629–32. El-Gohary M, Holmstrom L, Huisinga J, King E, McNames J, Horak F. Upper limb joint angle tracking with inertial sensors. Conf Proc IEEE Eng Med Biol Soc. 2011;2011:5629–32.
79.
go back to reference Zhang Z, Wong W, Wu J. Ubiquitous human upper-limb motion estimation using wearable sensors. IEEE Trans Inf Technol Biomed. 2011;15(4):513–21.PubMedCrossRef Zhang Z, Wong W, Wu J. Ubiquitous human upper-limb motion estimation using wearable sensors. IEEE Trans Inf Technol Biomed. 2011;15(4):513–21.PubMedCrossRef
80.
go back to reference El-Gohary M, McNames J. Shoulder and elbow joint angle tracking with inertial sensors. IEEE Trans Biomed Eng. 2012;59(9):2635–41.PubMedCrossRef El-Gohary M, McNames J. Shoulder and elbow joint angle tracking with inertial sensors. IEEE Trans Biomed Eng. 2012;59(9):2635–41.PubMedCrossRef
81.
go back to reference Lee GX, Low K. A factorized quaternion approach to determine the arm motions using Triaxial accelerometers with anatomical and sensor constraints. IEEE Trans Instrum Meas. 2012;61(6):1793–802.CrossRef Lee GX, Low K. A factorized quaternion approach to determine the arm motions using Triaxial accelerometers with anatomical and sensor constraints. IEEE Trans Instrum Meas. 2012;61(6):1793–802.CrossRef
82.
go back to reference Hsu Y, Wang J, Lin Y, Chen S, Tsai Y, Chu C, Chang C: A wearable inertial-sensing-based body sensor network for shoulder range of motion assessment. In: 2013 1st International Conference on Orange Technologies (ICOT): 12–16 March 2013 2013; 2013: 328–331. Hsu Y, Wang J, Lin Y, Chen S, Tsai Y, Chu C, Chang C: A wearable inertial-sensing-based body sensor network for shoulder range of motion assessment. In: 2013 1st International Conference on Orange Technologies (ICOT): 12–16 March 2013 2013; 2013: 328–331.
83.
go back to reference Ricci L, Formica D, Sparaci L, Lasorsa FR, Taffoni F, Tamilia E, Guglielmelli E. A new calibration methodology for thorax and upper limbs motion capture in children using magneto and inertial sensors. Sensors (Basel). 2014;14(1):1057–72.CrossRef Ricci L, Formica D, Sparaci L, Lasorsa FR, Taffoni F, Tamilia E, Guglielmelli E. A new calibration methodology for thorax and upper limbs motion capture in children using magneto and inertial sensors. Sensors (Basel). 2014;14(1):1057–72.CrossRef
84.
go back to reference Roldan-Jimenez C, Cuesta-Vargas A, Bennett P. Studying upper-limb kinematics using inertial sensors embedded in Mobile phones. JMIR Rehabil Assist Technol. 2015;2(1):e4.PubMedPubMedCentralCrossRef Roldan-Jimenez C, Cuesta-Vargas A, Bennett P. Studying upper-limb kinematics using inertial sensors embedded in Mobile phones. JMIR Rehabil Assist Technol. 2015;2(1):e4.PubMedPubMedCentralCrossRef
85.
go back to reference Meng D, Shoepe T, Vejarano G. Accuracy improvement on the measurement of human-joint angles. IEEE J Biomed Health Inform. 2016;20(2):498–507.PubMedCrossRef Meng D, Shoepe T, Vejarano G. Accuracy improvement on the measurement of human-joint angles. IEEE J Biomed Health Inform. 2016;20(2):498–507.PubMedCrossRef
86.
go back to reference Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34.PubMedPubMedCentralCrossRef Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng Online. 2017;16(1):34.PubMedPubMedCentralCrossRef
87.
go back to reference Kim HJ, Lee YS, Kim D: Arm Motion Estimation Algorithm Using MYO Armband. In: 2017 First IEEE International Conference on Robotic Computing (IRC): 10–12 April 2017 2017; 2017: 376–381. Kim HJ, Lee YS, Kim D: Arm Motion Estimation Algorithm Using MYO Armband. In: 2017 First IEEE International Conference on Robotic Computing (IRC): 10–12 April 2017 2017; 2017: 376–381.
88.
go back to reference Morrow MMB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227–32.PubMedPubMedCentralCrossRef Morrow MMB, Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. Validation of inertial measurement units for upper body kinematics. J Appl Biomech. 2017;33(3):227–32.PubMedPubMedCentralCrossRef
89.
go back to reference Rose M, Curtze C, O'Sullivan J, El-Gohary M, Crawford D, Friess D, Brady JM. Wearable inertial sensors allow for quantitative assessment of shoulder and elbow kinematics in a cadaveric knee arthroscopy model. Arthroscopy. 2017;33(12):2110–6.PubMedCrossRef Rose M, Curtze C, O'Sullivan J, El-Gohary M, Crawford D, Friess D, Brady JM. Wearable inertial sensors allow for quantitative assessment of shoulder and elbow kinematics in a cadaveric knee arthroscopy model. Arthroscopy. 2017;33(12):2110–6.PubMedCrossRef
90.
go back to reference Tian Y, Li Y, Zhu L, Tan J: Inertial-based real-time human upper limb tracking using twists and exponential maps in free-living environments. In: 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM): 27–31 Aug. 2017 2017; 2017: 552–557. Tian Y, Li Y, Zhu L, Tan J: Inertial-based real-time human upper limb tracking using twists and exponential maps in free-living environments. In: 2017 2nd International Conference on Advanced Robotics and Mechatronics (ICARM): 27–31 Aug. 2017 2017; 2017: 552–557.
91.
go back to reference Pathirana PN, Karunarathne MS, Williams GL, Nam PT, Durrant-Whyte H. Robust and accurate capture of human joint pose using an inertial sensor. IEEE Journal of Translational Engineering in Health and Medicine. 2018;6:1–11.CrossRef Pathirana PN, Karunarathne MS, Williams GL, Nam PT, Durrant-Whyte H. Robust and accurate capture of human joint pose using an inertial sensor. IEEE Journal of Translational Engineering in Health and Medicine. 2018;6:1–11.CrossRef
92.
go back to reference Filippeschi A, Schmitz N, Miezal M, Bleser G, Ruffaldi E, Stricker D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors (Basel). 2017;17:6.CrossRef Filippeschi A, Schmitz N, Miezal M, Bleser G, Ruffaldi E, Stricker D. Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors (Basel). 2017;17:6.CrossRef
93.
go back to reference Madgwick SO, Harrison AJ, Vaidyanathan A. Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int Conf Rehabil Robot. 2011;2011:5975346.PubMed Madgwick SO, Harrison AJ, Vaidyanathan A. Estimation of IMU and MARG orientation using a gradient descent algorithm. IEEE Int Conf Rehabil Robot. 2011;2011:5975346.PubMed
95.
go back to reference Holm R: Electric contacts: theory and application: Springer Science & Business Media; 2013. Holm R: Electric contacts: theory and application: Springer Science & Business Media; 2013.
96.
go back to reference Yang J, Feng X, Kim JH, Rajulu S. Review of biomechanical models for human shoulder complex. International Journal of Human Factors Modelling and Simulation. 2010;1(3):271–93.CrossRef Yang J, Feng X, Kim JH, Rajulu S. Review of biomechanical models for human shoulder complex. International Journal of Human Factors Modelling and Simulation. 2010;1(3):271–93.CrossRef
97.
go back to reference Liu Y, Zhang Y, Zeng M: Joint parameter estimation using Magneto and Inertial measurement units. In: 2017 36th Chinese Control Conference (CCC): 26–28 July 2017 2017; 2017: 2225–2230. Liu Y, Zhang Y, Zeng M: Joint parameter estimation using Magneto and Inertial measurement units. In: 2017 36th Chinese Control Conference (CCC): 26–28 July 2017 2017; 2017: 2225–2230.
98.
go back to reference Chen X, Zhang J, Hamel WR, Tan J: An inertial-based human motion tracking system with twists and exponential maps. In: 2014 IEEE International Conference on Robotics and Automation (ICRA): 31 May-7 June 2014 2014; 2014: 5665–5670. Chen X, Zhang J, Hamel WR, Tan J: An inertial-based human motion tracking system with twists and exponential maps. In: 2014 IEEE International Conference on Robotics and Automation (ICRA): 31 May-7 June 2014 2014; 2014: 5665–5670.
99.
go back to reference Sugamoto K, Harada T, Machida A, Inui H, Miyamoto T, Takeuchi E, Yoshikawa H, Ochi T. Scapulohumeral rhythm: relationship between motion velocity and rhythm. Clin Orthop Relat Res. 2002;401:119–24.CrossRef Sugamoto K, Harada T, Machida A, Inui H, Miyamoto T, Takeuchi E, Yoshikawa H, Ochi T. Scapulohumeral rhythm: relationship between motion velocity and rhythm. Clin Orthop Relat Res. 2002;401:119–24.CrossRef
100.
go back to reference Struyf F, Nijs J, Baeyens JP, Mottram S, Meeusen R. Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand J Med Sci Sports. 2011;21(3):352–8.PubMedCrossRef Struyf F, Nijs J, Baeyens JP, Mottram S, Meeusen R. Scapular positioning and movement in unimpaired shoulders, shoulder impingement syndrome, and glenohumeral instability. Scand J Med Sci Sports. 2011;21(3):352–8.PubMedCrossRef
101.
go back to reference Beckmann JS, Lew D. Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities. Genome Med. 2016;8(1):134.PubMedPubMedCentralCrossRef Beckmann JS, Lew D. Reconciling evidence-based medicine and precision medicine in the era of big data: challenges and opportunities. Genome Med. 2016;8(1):134.PubMedPubMedCentralCrossRef
102.
go back to reference Sikka RS, Baer M, Raja A, Stuart M, Tompkins M. Analytics in sports medicine: implications and responsibilities that accompany the era of big data. J Bone Joint Surg Am. 2019;101(3):276–83.PubMedCrossRef Sikka RS, Baer M, Raja A, Stuart M, Tompkins M. Analytics in sports medicine: implications and responsibilities that accompany the era of big data. J Bone Joint Surg Am. 2019;101(3):276–83.PubMedCrossRef
Metadata
Title
Wearable systems for shoulder kinematics assessment: a systematic review
Authors
Arianna Carnevale
Umile Giuseppe Longo
Emiliano Schena
Carlo Massaroni
Daniela Lo Presti
Alessandra Berton
Vincenzo Candela
Vincenzo Denaro
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2019
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-019-2930-4

Other articles of this Issue 1/2019

BMC Musculoskeletal Disorders 1/2019 Go to the issue