Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2018

Open Access 01-12-2018 | Research article

Evaluation of the theoretical optimal angle of the tibial tunnel in transtibial anatomic posterior cruciate ligament reconstruction by computed tomography

Authors: Xiaohui Zhang, Yuanjun Teng, Xinxin Yang, Rui Li, Chongwen Ma, Hong Wang, Hua Han, Bin Geng, Yayi Xia

Published in: BMC Musculoskeletal Disorders | Issue 1/2018

Login to get access

Abstract

Background

“Killer turn” effect is a critical explanation for the recurrent posterior laxity following transtibial posterior cruciate ligament (PCL) reconstruction, which affected by the angle of the tibial tunnel. Meanwhile, excessive tunnel angle would have an adverse impact on the healing of tendon to bone. The purpose was to evaluate the theoretical optimal angle of the tibial tunnel in transtibial anatomic PCL reconstruction.

Methods

The measurements were performed on CT sagittal plane, including the thickness of cancellous bone (L1), the theoretical optimal angle of the tibial tunnel (TOA, which was measured between tibial plateau and the extension cord connecting the center of PCL insertion site with a point 5 mm superior from marrow cavity vertex), L2 - the distance from anterior tunnel aperture to anterior end of tibial plateau, L3 - the distance from anterior tunnel aperture to tibial tuberosity (lowest edge of patellar ligament attachment).

Results

The value of TOA and L3 were 35.4 ± 7.9 ° and 26.8 ± 11.4 mm, respectively. L1 and L2 were higher in males than females (L1, P = 0.002; L2, P = 0.046). Regarding age, L1, TOA, L2 and L3 were higher in the 46–60 years group than 31–45 years group (P = 0.02, P = 0.001, P = 0.038, P = 0.032, respectively). With regard to height, L1 was lower in group I - < 1.66 m than group II - 1.66 to 1.75 m and group III - > 1.75 m (I v II, P = 0.015, I v III, P = 0.026). L2 was also lower in group I than group II and group III (I v II, P = 0.026, I v III, P = 0.006). TOA and L3 showed no significant differences among sex and height groups (P > 0.05).

Conclusions

TOA (35.4 ° ± 7.9 °) and L3 (26.8 ± 11.4 mm) could be used as a reference for ideal tibial tunnel placement in transtibial anatomic PCL reconstruction, so as to prevent recurrent PCL laxity and ensure good graft healing. However, further clinical validation is needed.
Literature
1.
go back to reference Hermans S, Corten K, Bellemans J. Long-term results of isolated anterolateral bundle reconstructions of the posterior cruciate ligament: a 6- to 12-year follow-up study. Am J Sports Med. 2009;37(8):1499–507.CrossRef Hermans S, Corten K, Bellemans J. Long-term results of isolated anterolateral bundle reconstructions of the posterior cruciate ligament: a 6- to 12-year follow-up study. Am J Sports Med. 2009;37(8):1499–507.CrossRef
3.
go back to reference Chahla J, Moatshe G, Cinque ME, Dornan GJ, Mitchell JJ, Ridley TJ, Single-Bundle LPRF. Double-bundle posterior cruciate ligament reconstructions: a systematic review and meta-analysis of 441 patients at a minimum 2 Years’ follow-up. Arthroscopy. 2017;33(11):2066–80.PubMed Chahla J, Moatshe G, Cinque ME, Dornan GJ, Mitchell JJ, Ridley TJ, Single-Bundle LPRF. Double-bundle posterior cruciate ligament reconstructions: a systematic review and meta-analysis of 441 patients at a minimum 2 Years’ follow-up. Arthroscopy. 2017;33(11):2066–80.PubMed
4.
go back to reference Margheritini F, Rihn JA, Mauro CS, Stabile KJ, Woo SL, Harner CD. Biomechanics of initial tibial fixation in posterior cruciate ligament reconstruction. Arthroscopy. 2005;21(10):1164–71.CrossRef Margheritini F, Rihn JA, Mauro CS, Stabile KJ, Woo SL, Harner CD. Biomechanics of initial tibial fixation in posterior cruciate ligament reconstruction. Arthroscopy. 2005;21(10):1164–71.CrossRef
5.
go back to reference Kitamura N, Yasuda K, Tohyama H, Yamanaka M, Tanabe Y. Primary stability of three posterior cruciate ligament reconstruction procedures: a biomechanical in vitro study. Arthroscopy. 2005;21(8):970–8.CrossRef Kitamura N, Yasuda K, Tohyama H, Yamanaka M, Tanabe Y. Primary stability of three posterior cruciate ligament reconstruction procedures: a biomechanical in vitro study. Arthroscopy. 2005;21(8):970–8.CrossRef
6.
go back to reference Weimann A, Wolfert A, Zantop T, Eggers AK, Raschke M, Petersen W. Reducing the “killer turn” in posterior cruciate ligament reconstruction by fixation level and smoothing the tibial aperture. Arthroscopy. 2007;23(10):1104–11.CrossRef Weimann A, Wolfert A, Zantop T, Eggers AK, Raschke M, Petersen W. Reducing the “killer turn” in posterior cruciate ligament reconstruction by fixation level and smoothing the tibial aperture. Arthroscopy. 2007;23(10):1104–11.CrossRef
7.
go back to reference McAllister DR, Markolf KL, Oakes DA, Young CR, McWilliams J. A biomechanical comparison of tibial inlay and tibial tunnel posterior cruciate ligament reconstruction techniques: graft pretension and knee laxity. Am J Sports Med. 2002;30(3):312–7.CrossRef McAllister DR, Markolf KL, Oakes DA, Young CR, McWilliams J. A biomechanical comparison of tibial inlay and tibial tunnel posterior cruciate ligament reconstruction techniques: graft pretension and knee laxity. Am J Sports Med. 2002;30(3):312–7.CrossRef
8.
go back to reference Li Y, Zhang J, Song G, Li X, Feng H. The mechanism of “killer turn” causing residual laxity after transtibial posterior cruciate ligament reconstruction. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2016;3:13–8.PubMedPubMedCentral Li Y, Zhang J, Song G, Li X, Feng H. The mechanism of “killer turn” causing residual laxity after transtibial posterior cruciate ligament reconstruction. Asia Pac J Sports Med Arthrosc Rehabil Technol. 2016;3:13–8.PubMedPubMedCentral
9.
go back to reference Harvey AR, Thomas NP, Amis AA. The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. Knee. 2003;10(1):97–102.CrossRef Harvey AR, Thomas NP, Amis AA. The effect of screw length and position on fixation of four-stranded hamstring grafts for anterior cruciate ligament reconstruction. Knee. 2003;10(1):97–102.CrossRef
10.
go back to reference Amis AA. The strength of artificial ligament anchorages. A comparative experimental study. J Bone Joint Surg Br. 1988;70(3):397–403.CrossRef Amis AA. The strength of artificial ligament anchorages. A comparative experimental study. J Bone Joint Surg Br. 1988;70(3):397–403.CrossRef
11.
go back to reference Wen CY, Qin L, Lee KM, Wong MW, Chan KM. Grafted tendon healing in tibial tunnel is inferior to healing in femoral tunnel after anterior cruciate ligament reconstruction: a histomorphometric study in rabbits. Arthroscopy. 2010;26(1):58–66.CrossRef Wen CY, Qin L, Lee KM, Wong MW, Chan KM. Grafted tendon healing in tibial tunnel is inferior to healing in femoral tunnel after anterior cruciate ligament reconstruction: a histomorphometric study in rabbits. Arthroscopy. 2010;26(1):58–66.CrossRef
12.
go back to reference Wen CY, Qin L, Lee KM, Chan KM. Peri-graft bone mass and connectivity as predictors for the strength of tendon-to-bone attachment after anterior cruciate ligament reconstruction. Bone. 2009;45(3):545–52.CrossRef Wen CY, Qin L, Lee KM, Chan KM. Peri-graft bone mass and connectivity as predictors for the strength of tendon-to-bone attachment after anterior cruciate ligament reconstruction. Bone. 2009;45(3):545–52.CrossRef
13.
go back to reference Grassman SR, McDonald DB, Thornton GM, Shrive NG, Frank CB. Early healing processes of free tendon grafts within bone tunnels is bone-specific: a morphological study in a rabbit model. Knee. 2002;9(1):21–6.CrossRef Grassman SR, McDonald DB, Thornton GM, Shrive NG, Frank CB. Early healing processes of free tendon grafts within bone tunnels is bone-specific: a morphological study in a rabbit model. Knee. 2002;9(1):21–6.CrossRef
14.
go back to reference Lee YS, Ra HJ, Ahn JH, Ha JK, Kim JG. Posterior cruciate ligament tibial insertion anatomy and implications for tibial tunnel placement. Arthroscopy. 2011;27(2):182–7.CrossRef Lee YS, Ra HJ, Ahn JH, Ha JK, Kim JG. Posterior cruciate ligament tibial insertion anatomy and implications for tibial tunnel placement. Arthroscopy. 2011;27(2):182–7.CrossRef
15.
go back to reference Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP. Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med. 2001;29(1):67–71.CrossRef Nagarkatti DG, McKeon BP, Donahue BS, Fulkerson JP. Mechanical evaluation of a soft tissue interference screw in free tendon anterior cruciate ligament graft fixation. Am J Sports Med. 2001;29(1):67–71.CrossRef
Metadata
Title
Evaluation of the theoretical optimal angle of the tibial tunnel in transtibial anatomic posterior cruciate ligament reconstruction by computed tomography
Authors
Xiaohui Zhang
Yuanjun Teng
Xinxin Yang
Rui Li
Chongwen Ma
Hong Wang
Hua Han
Bin Geng
Yayi Xia
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2018
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-018-2348-4

Other articles of this Issue 1/2018

BMC Musculoskeletal Disorders 1/2018 Go to the issue