Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2018

Open Access 01-12-2018 | Research article

Runners with patellofemoral pain demonstrate sub-groups of pelvic acceleration profiles using hierarchical cluster analysis: an exploratory cross-sectional study

Authors: Ricky Watari, Sean T. Osis, Angkoon Phinyomark, Reed Ferber

Published in: BMC Musculoskeletal Disorders | Issue 1/2018

Login to get access

Abstract

Background

Previous studies have suggested that distinct and homogenous sub-groups of gait patterns exist among runners with patellofemoral pain (PFP), based on gait analysis. However, acquisition of 3D kinematic data using optical systems is time consuming and prone to marker placement errors. In contrast, axial segment acceleration data can represent an overall running pattern, being easy to acquire and not influenced by marker placement error. Therefore, the purpose of this study was to determine if pelvic acceleration patterns during running could be used to classify PFP patients into homogeneous sub-groups. A secondary purpose was to analyze lower limb kinematic data to investigate the practical implications of clustering these subjects based on 3D pelvic acceleration data.

Methods

A hierarchical cluster analysis was used to determine sub-groups of similar running profiles among 110 PFP subjects, separately for males (n = 44) and females (n = 66), using pelvic acceleration data (reduced with principal component analysis) during treadmill running acquired with optical motion capture system. In a secondary analysis, peak joint angles were compared between clusters (α = 0.05) to provide clinical context and deeper understanding of variables that separated clusters.

Results

The results reveal two distinct running gait sub-groups (C1 and C2) for female subjects and no sub-groups were identified for males. Two pelvic acceleration components were different between clusters (PC1 and PC5; p < 0.001). While females in C1 presented similar acceleration patterns to males, C2 presented greater vertical and anterior peak accelerations. All females presented higher and delayed mediolateral acceleration peaks than males. Males presented greater ankle eversion (p < 0.001), lower knee abduction (p = 0.007) and hip adduction (p = 0.002) than all females, and lower hip internal rotation than C1 (p = 0.007).

Conclusions

Two distinct and homogeneous kinematic PFP sub-groups were identified for female subjects, but not for males. The results suggest that differences in running gait patterns between clusters occur mainly due to sex-related factors, but there are subtle differences among female subjects. This study shows the potential use of pelvic acceleration patterns, which can be acquired with accessible wearable technology (i.e. accelerometers).
Literature
2.
go back to reference Ferber R, Kendall KD, Farr L. Changes in knee biomechanics after a hip-abductor strengthening protocol for runners with patellofemoral pain syndrome. J Athl Train. 2011;46:142–9.CrossRefPubMedPubMedCentral Ferber R, Kendall KD, Farr L. Changes in knee biomechanics after a hip-abductor strengthening protocol for runners with patellofemoral pain syndrome. J Athl Train. 2011;46:142–9.CrossRefPubMedPubMedCentral
3.
go back to reference Ferber R, Bolgla LA, Earl-Boehm JE, Emery C, Hamstra-Wright K. Strengthening of the hip and core versus knee muscles for the treatment of patellofemoral pain: a multicenter randomized controlled trial. J Athl Train. 2015;50:366–77.CrossRefPubMedPubMedCentral Ferber R, Bolgla LA, Earl-Boehm JE, Emery C, Hamstra-Wright K. Strengthening of the hip and core versus knee muscles for the treatment of patellofemoral pain: a multicenter randomized controlled trial. J Athl Train. 2015;50:366–77.CrossRefPubMedPubMedCentral
4.
go back to reference Barton CJ, Levinger P, Menz HB, Webster KE. Kinematic gait characteristics associated with patellofemoral pain syndrome: a systematic review. Gait Posture. 2009;30:405–16.CrossRefPubMed Barton CJ, Levinger P, Menz HB, Webster KE. Kinematic gait characteristics associated with patellofemoral pain syndrome: a systematic review. Gait Posture. 2009;30:405–16.CrossRefPubMed
5.
go back to reference Dierks TA, Manal KT, Hamill J, Davis IS. Proximal and distal influences on hip and knee kinematics in runners with Patellofemoral pain during a prolonged run. J Orthop Sport Phys Ther. 2008;38:448–56.CrossRef Dierks TA, Manal KT, Hamill J, Davis IS. Proximal and distal influences on hip and knee kinematics in runners with Patellofemoral pain during a prolonged run. J Orthop Sport Phys Ther. 2008;38:448–56.CrossRef
6.
go back to reference Dierks TA, Manal KT, Hamill J, Davis I. Lower extremity kinematics in runners with patellofemoral pain during a prolonged run. Med Sci Sports Exerc. 2011;43:693–700.CrossRefPubMed Dierks TA, Manal KT, Hamill J, Davis I. Lower extremity kinematics in runners with patellofemoral pain during a prolonged run. Med Sci Sports Exerc. 2011;43:693–700.CrossRefPubMed
7.
go back to reference Noehren B, Pohl MB, Sanchez Z, Cunningham T, Lattermann C. Proximal and distal kinematics in female runners with patellofemoral pain. Clin Biomech. 2012;27:366–71.CrossRef Noehren B, Pohl MB, Sanchez Z, Cunningham T, Lattermann C. Proximal and distal kinematics in female runners with patellofemoral pain. Clin Biomech. 2012;27:366–71.CrossRef
8.
go back to reference Willy RW, Manal KT, Witvrouw EE, Davis IS. Are mechanics different between male and female runners with patellofemoral pain? Med Sci Sports Exerc. 2012;44:2165–71.CrossRefPubMedPubMedCentral Willy RW, Manal KT, Witvrouw EE, Davis IS. Are mechanics different between male and female runners with patellofemoral pain? Med Sci Sports Exerc. 2012;44:2165–71.CrossRefPubMedPubMedCentral
9.
go back to reference Witvrouw E, Callaghan MJ, Stefanik JJ, Noehren B, Bazett-Jones DM, Willson JD, et al. Patellofemoral pain: consensus statement from the 3rd international patellofemoral pain research retreat held in Vancouver, September 2013. Br J Sports Med. 2014;48:411–4.CrossRefPubMed Witvrouw E, Callaghan MJ, Stefanik JJ, Noehren B, Bazett-Jones DM, Willson JD, et al. Patellofemoral pain: consensus statement from the 3rd international patellofemoral pain research retreat held in Vancouver, September 2013. Br J Sports Med. 2014;48:411–4.CrossRefPubMed
11.
go back to reference Phinyomark, A, Petri, G, Ibáñez-Marcelo, E, Osis ST, Ferber R. Analysis of Big Data in Running Biomechanics: Current Trends and Future Directions. Journal of Medical and Biological Engineering – Special Issue: Recent Advances in Biomedical Engineering. 2018;38:244–260. Phinyomark, A, Petri, G, Ibáñez-Marcelo, E, Osis ST, Ferber R. Analysis of Big Data in Running Biomechanics: Current Trends and Future Directions. Journal of Medical and Biological Engineering – Special Issue: Recent Advances in Biomedical Engineering. 2018;38:244–260.
12.
go back to reference Phinyomark A, Osis S, Hettinga BA, Ferber R. Kinematic gait patterns in healthy runners: a hierarchical cluster analysis. J Biomech. 2015;48:3897–904.CrossRefPubMed Phinyomark A, Osis S, Hettinga BA, Ferber R. Kinematic gait patterns in healthy runners: a hierarchical cluster analysis. J Biomech. 2015;48:3897–904.CrossRefPubMed
13.
go back to reference Della Croce U, Cappozzo A, Kerrigan DC. Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles. Med Biol Eng Comput. 1999;37:155–61.CrossRefPubMed Della Croce U, Cappozzo A, Kerrigan DC. Pelvis and lower limb anatomical landmark calibration precision and its propagation to bone geometry and joint angles. Med Biol Eng Comput. 1999;37:155–61.CrossRefPubMed
14.
go back to reference Gorton GE, Hebert DA, Gannotti ME. Assessment of the kinematic variability among 12 motion analysis laboratories. Gait Posture. 2009;29:398–402.CrossRefPubMed Gorton GE, Hebert DA, Gannotti ME. Assessment of the kinematic variability among 12 motion analysis laboratories. Gait Posture. 2009;29:398–402.CrossRefPubMed
15.
go back to reference Osis ST, Hettinga BA, Macdonald S, Ferber R. Effects of simulated marker placement deviations on running kinematics and evaluation of a morphometric-based placement feedback method. PLoS One. 2016;11:e0147111.CrossRefPubMedPubMedCentral Osis ST, Hettinga BA, Macdonald S, Ferber R. Effects of simulated marker placement deviations on running kinematics and evaluation of a morphometric-based placement feedback method. PLoS One. 2016;11:e0147111.CrossRefPubMedPubMedCentral
16.
go back to reference Schütte KH, Maas EA, Exadaktylos V, Berckmans D, Venter RE, Vanwanseele B. Wireless tri-axial trunk Accelerometry detects deviations in dynamic Center of Mass Motion due to running-induced fatigue. PLoS One. 2015;10:e0141957.CrossRefPubMedPubMedCentral Schütte KH, Maas EA, Exadaktylos V, Berckmans D, Venter RE, Vanwanseele B. Wireless tri-axial trunk Accelerometry detects deviations in dynamic Center of Mass Motion due to running-induced fatigue. PLoS One. 2015;10:e0141957.CrossRefPubMedPubMedCentral
17.
go back to reference McGregor SJ, Busa MA, Yaggie JA, Bollt EM. High resolution MEMS accelerometers to estimate VO2 and compare running mechanics between highly trained inter-collegiate and untrained runners. PLoS One. 2009;4:e7355.CrossRefPubMedPubMedCentral McGregor SJ, Busa MA, Yaggie JA, Bollt EM. High resolution MEMS accelerometers to estimate VO2 and compare running mechanics between highly trained inter-collegiate and untrained runners. PLoS One. 2009;4:e7355.CrossRefPubMedPubMedCentral
18.
go back to reference Chan M, Estève D, Fourniols J-Y, Escriba C, Campo E. Smart wearable systems: current status and future challenges. Artif Intell Med. 2012;56:137–56.CrossRefPubMed Chan M, Estève D, Fourniols J-Y, Escriba C, Campo E. Smart wearable systems: current status and future challenges. Artif Intell Med. 2012;56:137–56.CrossRefPubMed
20.
go back to reference Haghi M, Thurow K, Stoll R. Wearable devices in medical internet of things: scientific research and commercially available devices. Healthc Inform Res. 2017;23:4.CrossRefPubMedPubMedCentral Haghi M, Thurow K, Stoll R. Wearable devices in medical internet of things: scientific research and commercially available devices. Healthc Inform Res. 2017;23:4.CrossRefPubMedPubMedCentral
21.
go back to reference Pohl MB, Lloyd C, Ferber R. Can the reliability of three-dimensional running kinematics be improved using functional joint methodology? Gait Posture. 2010;32:559–63.CrossRefPubMed Pohl MB, Lloyd C, Ferber R. Can the reliability of three-dimensional running kinematics be improved using functional joint methodology? Gait Posture. 2010;32:559–63.CrossRefPubMed
22.
go back to reference Osis ST, Hettinga BA, Macdonald SL, Ferber R. A novel method to evaluate error in anatomical marker placement using a modified generalized Procrustes analysis. Comput Methods Biomech Biomed Engin. 2015;18:1108–16.CrossRefPubMed Osis ST, Hettinga BA, Macdonald SL, Ferber R. A novel method to evaluate error in anatomical marker placement using a modified generalized Procrustes analysis. Comput Methods Biomech Biomed Engin. 2015;18:1108–16.CrossRefPubMed
23.
go back to reference Osis ST, Hettinga BA, Ferber R. Predicting ground contact events for a continuum of gait types: an application of targeted machine learning using principal component analysis. Gait Posture. 2016;46:86–90.CrossRefPubMed Osis ST, Hettinga BA, Ferber R. Predicting ground contact events for a continuum of gait types: an application of targeted machine learning using principal component analysis. Gait Posture. 2016;46:86–90.CrossRefPubMed
24.
go back to reference Gullstrand L, Halvorsen K, Tinmark F, Eriksson M, Nilsson J. Measurements of vertical displacement in running, a methodological comparison. Gait Posture. 2009;30:71–5.CrossRefPubMed Gullstrand L, Halvorsen K, Tinmark F, Eriksson M, Nilsson J. Measurements of vertical displacement in running, a methodological comparison. Gait Posture. 2009;30:71–5.CrossRefPubMed
26.
go back to reference Söderkvist I, Wedin PA. Determining the movements of the skeleton using well-configured markers. J Biomech. 1993;26:1473–7.CrossRefPubMed Söderkvist I, Wedin PA. Determining the movements of the skeleton using well-configured markers. J Biomech. 1993;26:1473–7.CrossRefPubMed
27.
go back to reference Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58:236–44.CrossRef Ward JH. Hierarchical grouping to optimize an objective function. J Am Stat Assoc. 1963;58:236–44.CrossRef
28.
go back to reference Calinski T, Harabasz J. A dendrite method for cluster analysis. Commun Stat Theory Methods. 1974;3:1–27.CrossRef Calinski T, Harabasz J. A dendrite method for cluster analysis. Commun Stat Theory Methods. 1974;3:1–27.CrossRef
29.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988. Cohen J. Statistical power analysis for the behavioral sciences. 2nd ed. Hillsdale, NJ: Lawrence Erlbaum Associates; 1988.
30.
go back to reference Brandon SCE, Graham RB, Almosnino S, Sadler EM, Stevenson JM, Deluzio KJ. Interpreting principal components in biomechanics: representative extremes and single component reconstruction. J Electromyogr Kinesiol. 2013;23:1304–10.CrossRefPubMed Brandon SCE, Graham RB, Almosnino S, Sadler EM, Stevenson JM, Deluzio KJ. Interpreting principal components in biomechanics: representative extremes and single component reconstruction. J Electromyogr Kinesiol. 2013;23:1304–10.CrossRefPubMed
31.
go back to reference Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2:433–59.CrossRef Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2:433–59.CrossRef
32.
go back to reference Phinyomark A, Hettinga BA, Osis S, Ferber R. Do intermediate- and higher-order principal components contain useful information to detect subtle changes in lower extremity biomechanics during running? Hum Mov Sci. 2015;44:91–101.CrossRefPubMed Phinyomark A, Hettinga BA, Osis S, Ferber R. Do intermediate- and higher-order principal components contain useful information to detect subtle changes in lower extremity biomechanics during running? Hum Mov Sci. 2015;44:91–101.CrossRefPubMed
33.
go back to reference Noehren B, Hamill J, Davis I. Prospective evidence for a hip etiology in patellofemoral pain. Med Sci Sports Exerc. 2013;45:1120–4.CrossRefPubMed Noehren B, Hamill J, Davis I. Prospective evidence for a hip etiology in patellofemoral pain. Med Sci Sports Exerc. 2013;45:1120–4.CrossRefPubMed
34.
go back to reference Kawabata M, Goto K, Fukusaki C, Sasaki K, Hihara E, Mizushina T, et al. Acceleration patterns in the lower and upper trunk during running. J Sports Sci Routledge. 2013;31:1841–53.CrossRef Kawabata M, Goto K, Fukusaki C, Sasaki K, Hihara E, Mizushina T, et al. Acceleration patterns in the lower and upper trunk during running. J Sports Sci Routledge. 2013;31:1841–53.CrossRef
35.
go back to reference Lin S-P, Sung W-H, Kuo F-C, Kuo TBJ, Chen J-J. Impact of center-of-mass acceleration on the performance of ultramarathon runners. J Hum Kinet De Gruyter Open. 2014;44:41–52. Lin S-P, Sung W-H, Kuo F-C, Kuo TBJ, Chen J-J. Impact of center-of-mass acceleration on the performance of ultramarathon runners. J Hum Kinet De Gruyter Open. 2014;44:41–52.
36.
go back to reference Grau S, Maiwald C, Krauss I, Axmann D, Horstmann T. The influence of matching populations on kinematic and kinetic variables in runners with Iliotibial band syndrome. Res Q Exerc Sport. 2008;79:450–7.CrossRefPubMed Grau S, Maiwald C, Krauss I, Axmann D, Horstmann T. The influence of matching populations on kinematic and kinetic variables in runners with Iliotibial band syndrome. Res Q Exerc Sport. 2008;79:450–7.CrossRefPubMed
37.
go back to reference Watari R, Kobsar D, Phinyomark A, Osis S, Ferber R. Determination of patellofemoral pain sub-groups and development of a method for predicting treatment outcome using running gait kinematics. Clin Biomech. 2016;38:13–21.CrossRef Watari R, Kobsar D, Phinyomark A, Osis S, Ferber R. Determination of patellofemoral pain sub-groups and development of a method for predicting treatment outcome using running gait kinematics. Clin Biomech. 2016;38:13–21.CrossRef
38.
go back to reference Nedergaard NJ, Robinson MA, Eusterwiemann E, Drust B, Lisboa PJ, Vanrenterghem J. The relationship between whole-body external loading and body-worn Accelerometry during team-sport movements. Int J Sports Physiol Perform. 2017;12:18–26.CrossRefPubMed Nedergaard NJ, Robinson MA, Eusterwiemann E, Drust B, Lisboa PJ, Vanrenterghem J. The relationship between whole-body external loading and body-worn Accelerometry during team-sport movements. Int J Sports Physiol Perform. 2017;12:18–26.CrossRefPubMed
39.
go back to reference Sinclair J, Shore HF, Taylor PJ, Atkins S. Sex differences in limb and joint stiffness in recreational runners. Hum Mov De Gruyter Open. 2015;16:137–41. Sinclair J, Shore HF, Taylor PJ, Atkins S. Sex differences in limb and joint stiffness in recreational runners. Hum Mov De Gruyter Open. 2015;16:137–41.
40.
go back to reference Lyle MA, Valero-Cuevas FJ, Gregor RJ, Powers CM. Control of dynamic foot-ground interactions in male and female soccer athletes: females exhibit reduced dexterity and higher limb stiffness during landing. J Biomech. 2014;47:512–7.CrossRefPubMed Lyle MA, Valero-Cuevas FJ, Gregor RJ, Powers CM. Control of dynamic foot-ground interactions in male and female soccer athletes: females exhibit reduced dexterity and higher limb stiffness during landing. J Biomech. 2014;47:512–7.CrossRefPubMed
41.
go back to reference Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH. Gender differences in strength and lower extremity kinematics during landing. Clin Orthop Relat Res. 2002;(401):162-9. Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH. Gender differences in strength and lower extremity kinematics during landing. Clin Orthop Relat Res. 2002;(401):162-9.
42.
go back to reference Nakagawa TH, Moriya ÉTU, Maciel CD, Serrão FV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without Patellofemoral pain syndrome. J. Orthop. Sport. Phys. Ther. 2012;42:491–501.CrossRef Nakagawa TH, Moriya ÉTU, Maciel CD, Serrão FV. Trunk, pelvis, hip, and knee kinematics, hip strength, and gluteal muscle activation during a single-leg squat in males and females with and without Patellofemoral pain syndrome. J. Orthop. Sport. Phys. Ther. 2012;42:491–501.CrossRef
43.
go back to reference Selfe J, Janssen J, Callaghan M, Witvrouw E, Sutton C, Richards J, et al. Are there three main subgroups within the patellofemoral pain population? A detailed characterisation study of 127 patients to help develop targeted intervention (TIPPs). Br. J. Sports Med. 2016;bjsports-2015-094792. Selfe J, Janssen J, Callaghan M, Witvrouw E, Sutton C, Richards J, et al. Are there three main subgroups within the patellofemoral pain population? A detailed characterisation study of 127 patients to help develop targeted intervention (TIPPs). Br. J. Sports Med. 2016;bjsports-2015-094792.
44.
go back to reference Henriksen M, Rosager S, Aaboe J, Graven-Nielsen T, Bliddal H. Experimental knee pain reduces muscle strength. J Pain Churchill Livingstone. 2011;12:460–7.CrossRef Henriksen M, Rosager S, Aaboe J, Graven-Nielsen T, Bliddal H. Experimental knee pain reduces muscle strength. J Pain Churchill Livingstone. 2011;12:460–7.CrossRef
45.
go back to reference Hirata RP, Arendt-Nielsen L, Shiozawa S, Graven-Nielsen T. Experimental knee pain impairs postural stability during quiet stance but not after perturbations. Eur J Appl Physiol. 2012;112:2511–21.CrossRefPubMed Hirata RP, Arendt-Nielsen L, Shiozawa S, Graven-Nielsen T. Experimental knee pain impairs postural stability during quiet stance but not after perturbations. Eur J Appl Physiol. 2012;112:2511–21.CrossRefPubMed
Metadata
Title
Runners with patellofemoral pain demonstrate sub-groups of pelvic acceleration profiles using hierarchical cluster analysis: an exploratory cross-sectional study
Authors
Ricky Watari
Sean T. Osis
Angkoon Phinyomark
Reed Ferber
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2018
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-018-2045-3

Other articles of this Issue 1/2018

BMC Musculoskeletal Disorders 1/2018 Go to the issue