Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2017

Open Access 01-12-2017 | Research article

Factors influencing treatment success of negative pressure wound therapy in patients with postoperative infections after Osteosynthetic fracture fixation

Authors: Kaywan Izadpanah, Stephanie Hansen, Julia Six-Merker, Peter Helwig, Norbert P Südkamp, Hagen Schmal

Published in: BMC Musculoskeletal Disorders | Issue 1/2017

Login to get access

Abstract

Background

Negative Pressure Wound Therapy (NPWT) is being increasingly used to treat postoperative infections after osteosynthetic fracture fixation. The aim of the present study was to analyze the influence of epidemiological and microbiological parameters on outcome.

Methods

Infections following operative fracture fixation were registered in a comprehensive Critical Incidence Reporting System and subsequently analyzed retrospectively for characteristics of patients including comorbidity, bacteria, and clinical factors. The influence of the investigated parameters was analyzed using logistic regression models based on data from 106 patients.

Results

Staged wound lavage in combination with NPWT allowed implant preservation in 44% and led to successful healing in 73% of patients. Fermentation characteristics, load and behavior after gram staining revealed no statistically significant correlation with either healing or implant preservation. Infecting bacteria were successfully isolated in 87% of patients. 20% of all infections were caused by bacterial combinations. We observed a change in the infecting bacterial species under therapy in 23%. Age, gender, metabolic diseases or comorbidities did not influence the probability of implant preservation or healing. The delayed manifestation of infection (>4 weeks) correlated with a higher risk for implant loss (OR 5.1 [95% CI 1.41–17.92]) as did the presence of bacterial mixture (OR 5.0 [95% CI 1.41–17.92]) and open soft-tissue damage ≥ grade 3 (OR 10.2 [CI 1.88–55.28]). Wounds were less likely to heal in conjunction with high CRP blood levels (>20 mg/l) at the time of discharge (OR 3.6 [95% CI 1.31–10.08]) or following a change of the infecting bacterial species under therapy (OR 3.2 [95% CI, 1.13–8.99]).

Conclusions

These results indicate that the delayed manifestation of infection, high CRP blood levels at discharge, and alterations in the infecting bacterial species under therapy raise the risk of NPWT failure.
Appendix
Available only for authorised users
Literature
1.
go back to reference Hofmann GO, Bar T, Buhren V. The osteosynthesis implant and early postoperative infection: healing with or without removal of the material? Der Chirurg. Zeitschrift Gebiete der operativen Medizen. 1997;68(11):1175–80.CrossRef Hofmann GO, Bar T, Buhren V. The osteosynthesis implant and early postoperative infection: healing with or without removal of the material? Der Chirurg. Zeitschrift Gebiete der operativen Medizen. 1997;68(11):1175–80.CrossRef
2.
go back to reference Braakenburg A, Obdeijn MC, Feitz R, van Rooij IA, van Griethuysen AJ, Klinkenbijl JH. The clinical efficacy and cost effectiveness of the vacuum-assisted closure technique in the management of acute and chronic wounds: a randomized controlled trial. Plast Reconstr Surg. 2006;118(2):390–7. discussion 398-400CrossRefPubMed Braakenburg A, Obdeijn MC, Feitz R, van Rooij IA, van Griethuysen AJ, Klinkenbijl JH. The clinical efficacy and cost effectiveness of the vacuum-assisted closure technique in the management of acute and chronic wounds: a randomized controlled trial. Plast Reconstr Surg. 2006;118(2):390–7. discussion 398-400CrossRefPubMed
3.
4.
go back to reference Armstrong DG, Lavery LA, Diabetic Foot Study C. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. Lancet. 2005;366(9498):1704–10.CrossRefPubMed Armstrong DG, Lavery LA, Diabetic Foot Study C. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomised controlled trial. Lancet. 2005;366(9498):1704–10.CrossRefPubMed
5.
go back to reference Blume PA, Walters J, Payne W, Ayala J, Lantis J. Comparison of negative pressure wound therapy using vacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: a multicenter randomized controlled trial. Diabetes Care. 2008;31(4):631–6.CrossRefPubMed Blume PA, Walters J, Payne W, Ayala J, Lantis J. Comparison of negative pressure wound therapy using vacuum-assisted closure with advanced moist wound therapy in the treatment of diabetic foot ulcers: a multicenter randomized controlled trial. Diabetes Care. 2008;31(4):631–6.CrossRefPubMed
6.
go back to reference Stiefel D, Schiestl CM, Meuli M. The positive effect of negative pressure: vacuum-assisted fixation of Integra artificial skin for reconstructive surgery. J Pediatr Surg. 2009;44(3):575–80.CrossRefPubMed Stiefel D, Schiestl CM, Meuli M. The positive effect of negative pressure: vacuum-assisted fixation of Integra artificial skin for reconstructive surgery. J Pediatr Surg. 2009;44(3):575–80.CrossRefPubMed
7.
go back to reference Baillot R, Cloutier D, Montalin L, Cote L, Lellouche F, Houde C, et al. Impact of deep sternal wound infection management with vacuum-assisted closure therapy followed by sternal osteosynthesis: a 15-year review of 23,499 sternotomies. Eur J Cardiothorac Surg. 2010;37(4):880–7.CrossRefPubMed Baillot R, Cloutier D, Montalin L, Cote L, Lellouche F, Houde C, et al. Impact of deep sternal wound infection management with vacuum-assisted closure therapy followed by sternal osteosynthesis: a 15-year review of 23,499 sternotomies. Eur J Cardiothorac Surg. 2010;37(4):880–7.CrossRefPubMed
8.
go back to reference Molnar JA, DeFranzo AJ, Hadaegh A, Morykwas MJ, Shen P, Argenta LC. Acceleration of Integra incorporation in complex tissue defects with subatmospheric pressure. Plast Reconstr Surg. 2004;113(5):1339–46.CrossRefPubMed Molnar JA, DeFranzo AJ, Hadaegh A, Morykwas MJ, Shen P, Argenta LC. Acceleration of Integra incorporation in complex tissue defects with subatmospheric pressure. Plast Reconstr Surg. 2004;113(5):1339–46.CrossRefPubMed
9.
go back to reference Herscovici D Jr, Sanders RW, Scaduto JM, Infante A, DiPasquale T. Vacuum-assisted wound closure (VAC therapy) for the management of patients with high-energy soft tissue injuries. J Orthop Trauma. 2003;17(10):683–8.CrossRefPubMed Herscovici D Jr, Sanders RW, Scaduto JM, Infante A, DiPasquale T. Vacuum-assisted wound closure (VAC therapy) for the management of patients with high-energy soft tissue injuries. J Orthop Trauma. 2003;17(10):683–8.CrossRefPubMed
10.
go back to reference Parrett BM, Matros E, Pribaz JJ, Orgill DP. Lower extremity trauma: trends in the management of soft-tissue reconstruction of open tibia-fibula fractures. Plast Reconstr Surg. 2006;117(4):1315–22. discussion 1323-1314CrossRefPubMed Parrett BM, Matros E, Pribaz JJ, Orgill DP. Lower extremity trauma: trends in the management of soft-tissue reconstruction of open tibia-fibula fractures. Plast Reconstr Surg. 2006;117(4):1315–22. discussion 1323-1314CrossRefPubMed
11.
go back to reference Iapichino G, Marzorati S, Umbrello M, Baccalini R, Barassi A, Cainarca M, et al. Daily monitoring of biomarkers of sepsis in complicated long-term ICU-patients: can it support treatment decisions? Minerva Anestesiol. 2010;76(10):814–23.PubMed Iapichino G, Marzorati S, Umbrello M, Baccalini R, Barassi A, Cainarca M, et al. Daily monitoring of biomarkers of sepsis in complicated long-term ICU-patients: can it support treatment decisions? Minerva Anestesiol. 2010;76(10):814–23.PubMed
12.
go back to reference Schmal H, Mehlhorn A, Stoffel F, Kostler W, Sudkamp NP, Niemeyer P. In vivo quantification of intraarticular cytokines in knees during natural and surgically induced cartilage repair. Cytotherapy. 2009;11(8):1065–75.CrossRefPubMed Schmal H, Mehlhorn A, Stoffel F, Kostler W, Sudkamp NP, Niemeyer P. In vivo quantification of intraarticular cytokines in knees during natural and surgically induced cartilage repair. Cytotherapy. 2009;11(8):1065–75.CrossRefPubMed
13.
go back to reference Schmal H, Oberst M, Hansen S, Six-Merker J, Sudkamp NP, Izadpanah K. Comparing effectivity of VAC therapy for treatment of infections following arthroplasty or soft-tissue surgery. Z Orthop Unfall. 2013;151(4):358–63.CrossRefPubMed Schmal H, Oberst M, Hansen S, Six-Merker J, Sudkamp NP, Izadpanah K. Comparing effectivity of VAC therapy for treatment of infections following arthroplasty or soft-tissue surgery. Z Orthop Unfall. 2013;151(4):358–63.CrossRefPubMed
14.
go back to reference Szulc W, Zawadzinski S. Post-traumatic infections of the musculoskeletal locomotor system; prophylaxis and treatment. Pol Tyg Lek. 1991;46(30–31):565–7.PubMed Szulc W, Zawadzinski S. Post-traumatic infections of the musculoskeletal locomotor system; prophylaxis and treatment. Pol Tyg Lek. 1991;46(30–31):565–7.PubMed
15.
go back to reference Gillespie WJ, Walenkamp G. Antibiotic prophylaxis for surgery for proximal femoral and other closed long bone fractures. Cochrane Database Syst Rev. 2001;1:CD000244. Gillespie WJ, Walenkamp G. Antibiotic prophylaxis for surgery for proximal femoral and other closed long bone fractures. Cochrane Database Syst Rev. 2001;1:CD000244.
16.
go back to reference Baumeister S, Levin LS, Erdmann D. Literature and own strategies concerning soft-tissue reconstruction and exposed osteosynthetic hardware, Der Chirurg. Zeitschrift Gebiete operativen Medizen. 2006;77(7):616–21.CrossRef Baumeister S, Levin LS, Erdmann D. Literature and own strategies concerning soft-tissue reconstruction and exposed osteosynthetic hardware, Der Chirurg. Zeitschrift Gebiete operativen Medizen. 2006;77(7):616–21.CrossRef
17.
go back to reference Klemm KW. Antibiotic bead chains. Clin Orthop Relat Res. 1993;295:63–76. Klemm KW. Antibiotic bead chains. Clin Orthop Relat Res. 1993;295:63–76.
18.
go back to reference Bihariesingh VJ, Stolarczyk EM, Karim RB, van Kooten EO. Plastic solutions for orthopaedic problems. Arch Orthop Trauma Surg. 2004;124(2):73–6.CrossRefPubMed Bihariesingh VJ, Stolarczyk EM, Karim RB, van Kooten EO. Plastic solutions for orthopaedic problems. Arch Orthop Trauma Surg. 2004;124(2):73–6.CrossRefPubMed
19.
go back to reference Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury. 2006;37(Suppl 2):S3–14.CrossRefPubMed Harris LG, Richards RG. Staphylococci and implant surfaces: a review. Injury. 2006;37(Suppl 2):S3–14.CrossRefPubMed
20.
go back to reference Robledo-Ogazon F, Mier y Diaz J, Sanchez-Fernandez P, Suarez-Moreno R, Vargas-Rivas A, Bojalil-Duran L. Use of vacuum-assisted closure in the treatment of surgical infection sites. Cirugia cirujanos. 2006;74(2):107–13. Robledo-Ogazon F, Mier y Diaz J, Sanchez-Fernandez P, Suarez-Moreno R, Vargas-Rivas A, Bojalil-Duran L. Use of vacuum-assisted closure in the treatment of surgical infection sites. Cirugia cirujanos. 2006;74(2):107–13.
21.
go back to reference Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science (New York, NY). 1999;284(5418):1318–22.CrossRef Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science (New York, NY). 1999;284(5418):1318–22.CrossRef
22.
go back to reference Moues CM, Vos MC, van den Bemd GJ, Stijnen T, Hovius SE: Bacterial load in relation to vacuum-assisted closure wound therapy: a prospective randomized trial. Wound Repair Regen 2004, 12(1):11-17. Moues CM, Vos MC, van den Bemd GJ, Stijnen T, Hovius SE: Bacterial load in relation to vacuum-assisted closure wound therapy: a prospective randomized trial. Wound Repair Regen 2004, 12(1):11-17.
23.
go back to reference Weed T, Ratliff C, Drake DB. Quantifying bacterial bioburden during negative pressure wound therapy: does the wound VAC enhance bacterial clearance? Ann Plast Surg. 2004;52(3):276–9. discussion 279-280CrossRefPubMed Weed T, Ratliff C, Drake DB. Quantifying bacterial bioburden during negative pressure wound therapy: does the wound VAC enhance bacterial clearance? Ann Plast Surg. 2004;52(3):276–9. discussion 279-280CrossRefPubMed
24.
go back to reference Koudela K Jr, Geigerova L, Hes O, Koudela K Sr. Comprehensive diagnosis of infection in revision total replacements of large joints. Acta Chir Orthop Traumatol Cechoslov. 2010;77(5):425–31. Koudela K Jr, Geigerova L, Hes O, Koudela K Sr. Comprehensive diagnosis of infection in revision total replacements of large joints. Acta Chir Orthop Traumatol Cechoslov. 2010;77(5):425–31.
25.
go back to reference Fang A, Hu SS, Endres N, Bradford DS. Risk factors for infection after spinal surgery. Spine. 2005;30(12):1460–5.CrossRefPubMed Fang A, Hu SS, Endres N, Bradford DS. Risk factors for infection after spinal surgery. Spine. 2005;30(12):1460–5.CrossRefPubMed
Metadata
Title
Factors influencing treatment success of negative pressure wound therapy in patients with postoperative infections after Osteosynthetic fracture fixation
Authors
Kaywan Izadpanah
Stephanie Hansen
Julia Six-Merker
Peter Helwig
Norbert P Südkamp
Hagen Schmal
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2017
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-017-1607-0

Other articles of this Issue 1/2017

BMC Musculoskeletal Disorders 1/2017 Go to the issue