Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Research article

Influence of high glucose and advanced glycation end-products (ages) levels in human osteoblast-like cells gene expression

Authors: Cristina Miranda, Mercè Giner, M. José Montoya, M. Angeles Vázquez, M. José Miranda, Ramón Pérez-Cano

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Background

Type 2 diabetes mellitus (T2DM) is associated with an increased risk of osteoporotic fracture. Several factors have been identified as being potentially responsible for this risk, such as alterations in bone remodelling that may have been induced by changes in circulating glucose or/and by the presence of non-oxidative end products of glycosylation (AGEs). The aim of this study is to assess whether such variations generate a change in the gene expression related to the differentiation and osteoblast activity (OPG, RANKL, RUNX2, OSTERIX, and AGE receptor) in primary cultures of human osteoblast-like cells (hOB).

Methods

We recruited 32 patients; 10 patients had osteoporotic hip fractures (OP group), 12 patients had osteoporotic hip fractures with T2DM (T2DM group), and 10 patients had hip osteoarthritis (OA group) with no osteoporotic fractures and no T2DM. The gene expression was analyzed in hOB cultures treated with physiological glucose concentration (4.5 mM) as control, high glucose (25 mM), and high glucose plus AGEs (2 μg/ml) for 24 h.

Results

The hOB cultures from patients with hip fractures presented slower proliferation. Additionally, the hOB cultures from the T2DM group were the most negatively affected with respect to RUNX2 and OSX gene expression when treated solely with high glucose or with high glucose plus AGEs. Moreover, high levels of glucose induced a major decrease in the RANKL/OPG ratio when comparing the OP and the T2DM groups to the OA group.

Conclusions

Our data indicates an altered bone remodelling rate in the T2DM group, which may, at least partially, explain the reduced bone strength and increased incidence of non-traumatic fractures in diabetic patients.
Literature
1.
2.
go back to reference Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Curr Osteoporos Rep. 2007;5:105–11.CrossRefPubMed Schwartz AV, Sellmeyer DE. Diabetes, fracture, and bone fragility. Curr Osteoporos Rep. 2007;5:105–11.CrossRefPubMed
5.
6.
go back to reference Hie M, Tsukamoto I. Increased expression of the receptor for activation of NF-kB and decreased runt-related transcription factor 2 expression in bone of rats with streptozotocin-induced diabetes. Int J Mol Med. 2010;26(4):611–8. Available at http://dx.doi.org/10.3892/ijmm_00000506.PubMed Hie M, Tsukamoto I. Increased expression of the receptor for activation of NF-kB and decreased runt-related transcription factor 2 expression in bone of rats with streptozotocin-induced diabetes. Int J Mol Med. 2010;26(4):611–8. Available at http://​dx.​doi.​org/​10.​3892/​ijmm_​00000506.PubMed
7.
8.
go back to reference Lu H, Kraut D, Gerstenfeld LC, Graves DT. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2003;144:346–52. doi:10.1210/en.2002-220072.CrossRefPubMed Lu H, Kraut D, Gerstenfeld LC, Graves DT. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2003;144:346–52. doi:10.​1210/​en.​2002-220072.CrossRefPubMed
10.
go back to reference Okazaki K, Yamaguchi T, Tanaka K-I, et al. Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int. 2012;91:286–96. doi:10.1007/s00223-012-9641-2.CrossRefPubMed Okazaki K, Yamaguchi T, Tanaka K-I, et al. Advanced glycation end products (AGEs), but not high glucose, inhibit the osteoblastic differentiation of mouse stromal ST2 cells through the suppression of osterix expression, and inhibit cell growth and increasing cell apoptosis. Calcif Tissue Int. 2012;91:286–96. doi:10.​1007/​s00223-012-9641-2.CrossRefPubMed
14.
go back to reference Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2007;18:427–44. doi:10.1007/s00198-006-0253-4.CrossRef Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA. 2007;18:427–44. doi:10.​1007/​s00198-006-0253-4.CrossRef
15.
go back to reference Hamann C, Goettsch C, Mettelsiefen J, et al. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function. Am J Physiol Endocrinol Metab. 2011;301:E1220–8. doi:10.1152/ajpendo.00378.2011.CrossRefPubMed Hamann C, Goettsch C, Mettelsiefen J, et al. Delayed bone regeneration and low bone mass in a rat model of insulin-resistant type 2 diabetes mellitus is due to impaired osteoblast function. Am J Physiol Endocrinol Metab. 2011;301:E1220–8. doi:10.​1152/​ajpendo.​00378.​2011.CrossRefPubMed
18.
go back to reference Haug AT, Braun KF, Ehnert S, et al. Gene expression changes in cancellous bone of type 2 diabetics: a biomolecular basis for diabetic bone disease. Langenbecks Arch Surg Dtsch Ges Für Chir. 2014;399:639–47. doi:10.1007/s00423-014-1188-4.CrossRef Haug AT, Braun KF, Ehnert S, et al. Gene expression changes in cancellous bone of type 2 diabetics: a biomolecular basis for diabetic bone disease. Langenbecks Arch Surg Dtsch Ges Für Chir. 2014;399:639–47. doi:10.​1007/​s00423-014-1188-4.CrossRef
23.
go back to reference Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.CrossRefPubMed Lacey DL, Timms E, Tan HL, et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76.CrossRefPubMed
25.
go back to reference Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res. 1998;37:586–600.CrossRefPubMed Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP. AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res. 1998;37:586–600.CrossRefPubMed
26.
go back to reference Tanaka K, Yamaguchi T, Kanazawa I, Sugimoto T. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun. 2015;461:193–9. doi:10.1016/j.bbrc.2015.02.091.CrossRefPubMed Tanaka K, Yamaguchi T, Kanazawa I, Sugimoto T. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun. 2015;461:193–9. doi:10.​1016/​j.​bbrc.​2015.​02.​091.CrossRefPubMed
28.
go back to reference Augoulea A, Vrachnis N, Lambrinoudaki I, Dafopoulos K, Iliodromiti Z, Daniilidis A, et al. Osteoprotegerin as a Marker of Atherosclerosis in Diabetic Patients. International Journal of Endocrinology [Internet]. Hindawi Publishing Corporation; 2013;2013:1–6. Available at: http://dx.doi.org/10.1155/2013/182060 Augoulea A, Vrachnis N, Lambrinoudaki I, Dafopoulos K, Iliodromiti Z, Daniilidis A, et al. Osteoprotegerin as a Marker of Atherosclerosis in Diabetic Patients. International Journal of Endocrinology [Internet]. Hindawi Publishing Corporation; 2013;2013:1–6. Available at: http://​dx.​doi.​org/​10.​1155/​2013/​182060
29.
go back to reference Knudsen ST, Foss CH, Poulsen PL, et al. Increased plasma concentrations of osteoprotegerin in type 2 diabetic patients with microvascular complications. Eur J Endocrin Eur Fed Endocr Soc. 2003;149:39–42. doi:10.1530/eje.0.1490039.CrossRef Knudsen ST, Foss CH, Poulsen PL, et al. Increased plasma concentrations of osteoprotegerin in type 2 diabetic patients with microvascular complications. Eur J Endocrin Eur Fed Endocr Soc. 2003;149:39–42. doi:10.​1530/​eje.​0.​1490039.CrossRef
34.
go back to reference Ogawa N, Yamaguchi T, Yano S, et al. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res Horm Stoffwechselforschung Horm Métabolisme. 2007;39:871–5. doi:10.1055/s-2007-991157.CrossRef Ogawa N, Yamaguchi T, Yano S, et al. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res Horm Stoffwechselforschung Horm Métabolisme. 2007;39:871–5. doi:10.​1055/​s-2007-991157.CrossRef
36.
go back to reference Schurman L, McCarthy AD, Sedlinsky C, et al. Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2008;116:333–40. doi:10.1055/s-2007-992786.CrossRef Schurman L, McCarthy AD, Sedlinsky C, et al. Metformin reverts deleterious effects of advanced glycation end-products (AGEs) on osteoblastic cells. Exp Clin Endocrinol Diabetes Off J Ger Soc Endocrinol Ger Diabetes Assoc. 2008;116:333–40. doi:10.​1055/​s-2007-992786.CrossRef
Metadata
Title
Influence of high glucose and advanced glycation end-products (ages) levels in human osteoblast-like cells gene expression
Authors
Cristina Miranda
Mercè Giner
M. José Montoya
M. Angeles Vázquez
M. José Miranda
Ramón Pérez-Cano
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-1228-z

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue