Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Research article

A functional movement screen profile of an Australian state police force: a retrospective cohort study

Authors: Robin Marc Orr, Rodney Pope, Michael Stierli, Ben Hinton

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Background

Police officers are required to perform dynamic movements in unpredictable environments, the results of which can lead to injury. Early identification of poor movement patterns of a police population, and potential sub groups within this population, may provide opportunities to treat and minimise injury risks. The aim of this study was to profile the functional movement capabilities of an Australian state police force and potential sub groups through a retrospective cohort study.

Methods

Retrospective data from an Australian State Police Force were provided for analysis (♂ n = 1155, mean (±SD) age = 31.34 ± 8.41 years: ♀ n = 357, mean age = 27.99 ± 8.02 years). Data consisted of Functional Movement Screen (FMS) assessment results of male and female trainees and qualified police officers with all assessments conducted by a qualified Police Physical Training Instructor.

Results

Significantly higher (U = 253863, p < .001) FMS total scores were found for recruits (mean 15.23 ± SD 2.01 points) when compared to attested officers (14.57 ± 2.96 points) and differences in FMS total scores also approached significance for females (15.24 ± 2.35 points) when compared to males (14.84 ± 2.55 points, U = 186926, p = .007), with age found to be a key, significant factor in explaining these observed differences (F (1,1507) = 23.519, p < .001). The FMS components demonstrating poorest movement performance across all groups were the hurdle step and rotary stability.

Conclusions

Generally, police personnel (both attested officers and recruits of both genders) of greater age have a lower functional movement capability when compared to younger personnel, with greater percentages scoring 14 or below on the FMS. Specific conditioning programs to improve strength, range of motion and stability during identified key movement types in those demonstrating poorer movement performance may serve to reduce injuries in police personnel.
Literature
1.
go back to reference Blacker SD, Carter JM, Wilkinson DM, Richmond VL, Rayson MP, Peattie M. Physiological responses of Police Officers during job simulations wearing chemical, biological, radiological and nuclear personal protective equipment. Ergonomics. 2013;56(1):137–47.CrossRefPubMed Blacker SD, Carter JM, Wilkinson DM, Richmond VL, Rayson MP, Peattie M. Physiological responses of Police Officers during job simulations wearing chemical, biological, radiological and nuclear personal protective equipment. Ergonomics. 2013;56(1):137–47.CrossRefPubMed
2.
go back to reference Carlton SD, Orr R, Stierli M, Carbone PD. The impact of load carriage on mobility and marksmanship of the tactical response officer. J Aus Strength Cond. 2013;22(1):23–7. Carlton SD, Orr R, Stierli M, Carbone PD. The impact of load carriage on mobility and marksmanship of the tactical response officer. J Aus Strength Cond. 2013;22(1):23–7.
3.
go back to reference Orr R, Stierli M. Injuries common to tactical personnel (A multidisciplinary review). In: 2013 Australian Strength and Conditioning Association International Conference on Applied Strength and Conditioning: 2013. Melbourne: AUST; 2013. p. 1. Orr R, Stierli M. Injuries common to tactical personnel (A multidisciplinary review). In: 2013 Australian Strength and Conditioning Association International Conference on Applied Strength and Conditioning: 2013. Melbourne: AUST; 2013. p. 1.
4.
go back to reference Teyhen DS, Shaffer SW, Lorenson CL, Halfpap JP, Donofry DF, Walker MJ, Dugan JL, Childs JD. The functional movement screen: a reliability study. J Orthop Sports Phys Ther. 2012;42(6):530–40.CrossRefPubMed Teyhen DS, Shaffer SW, Lorenson CL, Halfpap JP, Donofry DF, Walker MJ, Dugan JL, Childs JD. The functional movement screen: a reliability study. J Orthop Sports Phys Ther. 2012;42(6):530–40.CrossRefPubMed
5.
go back to reference Gribble PA, Brigle J, Pietrosimone BG, Pfile KR, Webster KA. Intrarater reliability of the functional movement screen. J Strength Cond Res. 2013;27(4):978–81.CrossRefPubMed Gribble PA, Brigle J, Pietrosimone BG, Pfile KR, Webster KA. Intrarater reliability of the functional movement screen. J Strength Cond Res. 2013;27(4):978–81.CrossRefPubMed
6.
go back to reference Cook G, Burton L, Hoogenboom B. Pre-participation screening: The use of fundamental movements as an assessment of function–Part 1. N Am J Sports Phys Ther. 2006;1(2):62–72.PubMedPubMedCentral Cook G, Burton L, Hoogenboom B. Pre-participation screening: The use of fundamental movements as an assessment of function–Part 1. N Am J Sports Phys Ther. 2006;1(2):62–72.PubMedPubMedCentral
7.
go back to reference Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be predicted by a preseason functional movement screen? N Am J Sports Phys Ther. 2007;2(3):147–58.PubMedPubMedCentral Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be predicted by a preseason functional movement screen? N Am J Sports Phys Ther. 2007;2(3):147–58.PubMedPubMedCentral
8.
go back to reference White SMM: The ability of the Functional Movement Screen to predict musculoskeletal injuries in a cohort of New Zealand military personnel. Thesis (Masters of Physiotherapy). University of Otago; 2013. White SMM: The ability of the Functional Movement Screen to predict musculoskeletal injuries in a cohort of New Zealand military personnel. Thesis (Masters of Physiotherapy). University of Otago; 2013.
9.
go back to reference Kiesel K, Plisky P, Butler R. Functional movement test scores improve following a standardized off-season intervention program in professional football players. Scand J Med Sci Sports. 2011;21(2):287–92.CrossRefPubMed Kiesel K, Plisky P, Butler R. Functional movement test scores improve following a standardized off-season intervention program in professional football players. Scand J Med Sci Sports. 2011;21(2):287–92.CrossRefPubMed
10.
go back to reference Perry FT, Koehle MS. Normative data for the functional movement screen in middle-aged adults. J Strength Cond Res. 2013;27(2):458–62.CrossRefPubMed Perry FT, Koehle MS. Normative data for the functional movement screen in middle-aged adults. J Strength Cond Res. 2013;27(2):458–62.CrossRefPubMed
11.
go back to reference Chorba RS, Chorba DJ, Bouillon LE, Overmyer CA, Landis JA. Use of a functional movement screening tool to determine injury risk in female collegiate athletes. N Am J Sports Phys Ther. 2010;5(2):47–54.PubMedPubMedCentral Chorba RS, Chorba DJ, Bouillon LE, Overmyer CA, Landis JA. Use of a functional movement screening tool to determine injury risk in female collegiate athletes. N Am J Sports Phys Ther. 2010;5(2):47–54.PubMedPubMedCentral
12.
go back to reference Schneiders AG, Davidsson Å, Hörman E, Sullivan SJ. Functional movement screenTM normative values in a young, active population. Int J Sports Phys Ther. 2011;6(2):75–82.PubMedPubMedCentral Schneiders AG, Davidsson Å, Hörman E, Sullivan SJ. Functional movement screenTM normative values in a young, active population. Int J Sports Phys Ther. 2011;6(2):75–82.PubMedPubMedCentral
13.
go back to reference O’Connor FG, Deuster PA, Davis J, Pappas CG, Knapik JJ. Functional movement screening: predicting injuries in officer candidates. Med Sci Sports Exerc. 2011;43(12):2224–30.CrossRefPubMed O’Connor FG, Deuster PA, Davis J, Pappas CG, Knapik JJ. Functional movement screening: predicting injuries in officer candidates. Med Sci Sports Exerc. 2011;43(12):2224–30.CrossRefPubMed
14.
go back to reference Bock C, Orr R. The use of the FMS as a predictor of injury in the tactical population. Journal of Military and Veterans Health, 2015;23(2):33-42. Bock C, Orr R. The use of the FMS as a predictor of injury in the tactical population. Journal of Military and Veterans Health, 2015;23(2):33-42.
15.
go back to reference Bock C, Orr R, Stierli M, Hinton B. The functional movement screen as a predictor of police occupational task performance. Med Sci Sports Exer Supp. 2014;17(6):84. Bock C, Orr R, Stierli M, Hinton B. The functional movement screen as a predictor of police occupational task performance. Med Sci Sports Exer Supp. 2014;17(6):84.
16.
go back to reference Reis JP, Trone DW, Macera CA, Rauh MJ. Factors associated with discharge during marine corps basic training. Military medicine, 2007;172(9):936-41. Reis JP, Trone DW, Macera CA, Rauh MJ. Factors associated with discharge during marine corps basic training. Military medicine, 2007;172(9):936-41.
17.
go back to reference Bell NS, Mangione TW, Hemenway D, Amoroso PJ, Jones BH. High injury rates among female army trainees: a function of gender? Am J Prev Med. 2000;18(3):141–6.CrossRefPubMed Bell NS, Mangione TW, Hemenway D, Amoroso PJ, Jones BH. High injury rates among female army trainees: a function of gender? Am J Prev Med. 2000;18(3):141–6.CrossRefPubMed
18.
go back to reference Wentz L, Liu P-Y, Haymes E, Ilich JZ. Females have a greater incidence of stress fractures than males in both military and athletic populations: a systemic review. Mil Med. 2011;176(4):420–30.CrossRefPubMed Wentz L, Liu P-Y, Haymes E, Ilich JZ. Females have a greater incidence of stress fractures than males in both military and athletic populations: a systemic review. Mil Med. 2011;176(4):420–30.CrossRefPubMed
19.
go back to reference Lisman P, O’Connor FG, Deuster PA, Knapik JJ. Functional movement screen and aerobic fitness predict injuries in military training. Med Sci Sports Exerc. 2013;45(4):636–43.CrossRefPubMed Lisman P, O’Connor FG, Deuster PA, Knapik JJ. Functional movement screen and aerobic fitness predict injuries in military training. Med Sci Sports Exerc. 2013;45(4):636–43.CrossRefPubMed
20.
go back to reference Bock C, Orr R. Use of the functional movement screen in a tactical population: a review. J Mil Vet Health. 2015;23(2):31–40. Bock C, Orr R. Use of the functional movement screen in a tactical population: a review. J Mil Vet Health. 2015;23(2):31–40.
21.
go back to reference Orr R, Stierli M, Amabile ML, Wilkes B. The impact of a structured reconditioning program on the physical attributes and attitudes of injured police officers: A pilot study. J Aust Strength Cond. 2013;21(4):42–7. Orr R, Stierli M, Amabile ML, Wilkes B. The impact of a structured reconditioning program on the physical attributes and attitudes of injured police officers: A pilot study. J Aust Strength Cond. 2013;21(4):42–7.
22.
go back to reference SPSS Inc. Statistical Package for the Social Sciences (Version 23) [computer software]. New York, USA: IBM Corporation; 2015. SPSS Inc. Statistical Package for the Social Sciences (Version 23) [computer software]. New York, USA: IBM Corporation; 2015.
23.
go back to reference Teyhen DS, Riebel MA, McArthur DR, Savini M, Jones MJ, Goffar SL, Kiesel KB, Plisky PJ. Normative data and the influence of age and gender on power, balance, flexibility, and functional movement in healthy service members. Mil Med. 2014;179(4):413–20.CrossRefPubMed Teyhen DS, Riebel MA, McArthur DR, Savini M, Jones MJ, Goffar SL, Kiesel KB, Plisky PJ. Normative data and the influence of age and gender on power, balance, flexibility, and functional movement in healthy service members. Mil Med. 2014;179(4):413–20.CrossRefPubMed
24.
go back to reference McGill S, Frost D, Lam T, Finlay T, Darby K, Andersen J. Fitness and movement quality of emergency task force police officers: An age-grouped database with comparison to populations of emergency services personnel, athletes and the general public. Int J Ind Ergon. 2013;43(2):146–53.CrossRef McGill S, Frost D, Lam T, Finlay T, Darby K, Andersen J. Fitness and movement quality of emergency task force police officers: An age-grouped database with comparison to populations of emergency services personnel, athletes and the general public. Int J Ind Ergon. 2013;43(2):146–53.CrossRef
25.
go back to reference Peate W, Bates G, Lunda K, Francis S, Bellamy K. Core strength: a new model for injury prediction and prevention. J Occup Med Toxicol. 2007;2(3):1–9. Peate W, Bates G, Lunda K, Francis S, Bellamy K. Core strength: a new model for injury prediction and prevention. J Occup Med Toxicol. 2007;2(3):1–9.
26.
go back to reference Wilmore JH, Costill DL, Kenney L. Physiology of sport and exercise. 4th ed. Champaign: Human Kinetics; 2008. Wilmore JH, Costill DL, Kenney L. Physiology of sport and exercise. 4th ed. Champaign: Human Kinetics; 2008.
27.
go back to reference Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Patterns of flexibility, laxity, and strength in normal shoulders and shoulders with instability and impingement. Am J Sports Med. 1990;18(4):366–75.CrossRefPubMed Warner JJ, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Patterns of flexibility, laxity, and strength in normal shoulders and shoulders with instability and impingement. Am J Sports Med. 1990;18(4):366–75.CrossRefPubMed
28.
go back to reference Holmes M, McKinnon C, Dickerson CR, Callaghan J. The effects of police duty belt and seat design changes on lumbar spine posture, driver contact pressure and discomfort. Ergonomics. 2013;56(1):126–36.CrossRefPubMed Holmes M, McKinnon C, Dickerson CR, Callaghan J. The effects of police duty belt and seat design changes on lumbar spine posture, driver contact pressure and discomfort. Ergonomics. 2013;56(1):126–36.CrossRefPubMed
29.
go back to reference McKinnon C, Callaghan J, Dickerson C. Evaluation of the influence of mobile data terminal location on physical exposures during simulated police patrol activities. Appl Ergon. 2012;43(5):859–67.CrossRefPubMed McKinnon C, Callaghan J, Dickerson C. Evaluation of the influence of mobile data terminal location on physical exposures during simulated police patrol activities. Appl Ergon. 2012;43(5):859–67.CrossRefPubMed
30.
go back to reference Anderson GS, Plecas D, Segger T. Police officer physical ability testing–Re-validating a selection criterion. Policing. 2001;24(1):8–31.CrossRef Anderson GS, Plecas D, Segger T. Police officer physical ability testing–Re-validating a selection criterion. Policing. 2001;24(1):8–31.CrossRef
Metadata
Title
A functional movement screen profile of an Australian state police force: a retrospective cohort study
Authors
Robin Marc Orr
Rodney Pope
Michael Stierli
Ben Hinton
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-1146-0

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue