Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Research article

Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels

Authors: Xing Zhao, Anestis Papadopoulos, Shinichi Ibusuki, David A. Bichara, Daniel B. Saris, Jos Malda, Kristi S. Anseth, Thomas J. Gill, Mark A. Randolph

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Background

Injuries to the human native cartilage tissue are particularly problematic because cartilage has little to no ability to heal or regenerate itself. Employing a tissue engineering strategy that combines suitable cell sources and biomimetic hydrogels could be a promising alternative to achieve cartilage regeneration. However, the weak mechanical properties may be the major drawback to use fully degradable hydrogels. Besides, most of the fully degradable hydrogels degrade too fast to permit enough extracellular matrix (ECM) production for neocartilage formation. In this study, we demonstrated the feasibility of neocartilage regeneration using swine articular chondrocytes photoencapsualted into poly (ethylene glycol) dimethacrylate (PEGDM) copolymer hydrogels composed of different degradation profiles: degradable (PEG-LA-DM) and nondegradable (PEGDM) macromers in molar ratios of 50/50, 60/40, 70/30, 80/20, and 90/10.

Methods

Articular chondrocytes were isolated enzymatically from juvenile Yorkshire swine cartilage. 6 × 107 cells cells were added to each milliliter of macromer/photoinitiator (I2959) solution. Nonpolymerized gel containing the cells (100 μL) was placed in cylindrical molds (4.5 mm diameter × 6.5 mm in height). The macromer/photoinitiator/chondrocyte solutions were polymerized using ultraviolet (365 nm) light at 10 mW/cm2 for 10 mins. Also, an articular cartilaginous ring model was used to examine the capacity of the engineered cartilage to integrate with native cartilage. Samples in the pilot study were collected at 6 weeks. Samples in the long-term experimental groups (60/40 and 70/30) were implanted into nude mice subcutaneously and harvested at 6, 12 and 18 weeks. Additionally, cylindrical constructs that were not implanted used as time zero controls. All of the harvested specimens were examined grossly and analyzed histologically and biochemically.

Results

Histologically, the neocartilage formed in the photochemically crosslinked gels resembled native articular cartilage with chondrocytes in lacunae and surrounded by new ECM. Increases in total DNA, glycosaminoglycan, and hydroxyproline were observed over the time periods studied. The neocartilage integrated with existing native cartilage.

Conclusions

Articular cartilage generation was achieved using swine articular chondrocytes photoencapsulated in copolymer PEGDM hydrogels, and the neocartilage tissue had the ability to integrate with existing adjacent native cartilage.
Literature
1.
go back to reference Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;Suppl:362–9.CrossRef Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res. 2001;Suppl:362–9.CrossRef
2.
go back to reference Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.CrossRefPubMed Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.CrossRefPubMed
3.
go back to reference Hangody L, Kish G, Karpati Z, Udvarhelyi I, Szigeti I, Bely M. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics. 1998;21:751–6.PubMed Hangody L, Kish G, Karpati Z, Udvarhelyi I, Szigeti I, Bely M. Mosaicplasty for the treatment of articular cartilage defects: application in clinical practice. Orthopedics. 1998;21:751–6.PubMed
4.
go back to reference Roberts S, Menage J, Sandell LJ, Evans EH, Richardson JB. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee. 2009;16:398–404.CrossRefPubMedPubMedCentral Roberts S, Menage J, Sandell LJ, Evans EH, Richardson JB. Immunohistochemical study of collagen types I and II and procollagen IIA in human cartilage repair tissue following autologous chondrocyte implantation. Knee. 2009;16:398–404.CrossRefPubMedPubMedCentral
5.
go back to reference Berta Á, Duska Z, Tóth F, Hangody L. Clinical experiences with cartilage repair techniques: outcomes, indications, contraindications and rehabilitation. Eklem Hastalik Cerrahisi. 2015;26:84–96.CrossRefPubMed Berta Á, Duska Z, Tóth F, Hangody L. Clinical experiences with cartilage repair techniques: outcomes, indications, contraindications and rehabilitation. Eklem Hastalik Cerrahisi. 2015;26:84–96.CrossRefPubMed
6.
go back to reference Mundi R, Bedi A, Chow L, Crouch S, Simunovic N, Sibilsky Enselman E, Ayeni OR. Cartilage restoration of the knee: a systematic review and meta-analysis of level 1 studies. Am J Sports Med. 2015. [Epub ahead of print]. Mundi R, Bedi A, Chow L, Crouch S, Simunovic N, Sibilsky Enselman E, Ayeni OR. Cartilage restoration of the knee: a systematic review and meta-analysis of level 1 studies. Am J Sports Med. 2015. [Epub ahead of print].
7.
go back to reference Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)--5-year follow-up. Knee. 2006;13:194–202.CrossRefPubMed Behrens P, Bitter T, Kurz B, Russlies M. Matrix-associated autologous chondrocyte transplantation/implantation (MACT/MACI)--5-year follow-up. Knee. 2006;13:194–202.CrossRefPubMed
8.
go back to reference Erggelet C, Endres M, Neumann K, Morawietz L, Ringe J, Haberstroh K, Sittinger M, Kaps C . Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res. 2009;10:1353–60.CrossRef Erggelet C, Endres M, Neumann K, Morawietz L, Ringe J, Haberstroh K, Sittinger M, Kaps C . Formation of cartilage repair tissue in articular cartilage defects pretreated with microfracture and covered with cell-free polymer-based implants. J Orthop Res. 2009;10:1353–60.CrossRef
9.
go back to reference Wegener B, Schrimpf FM, Pietschmann MF, Milz S, Berger-Lohr M, Bergschmidt P, et al. Matrix-guided cartilage regeneration in chondral defects. Biotechnol Appl Biochem. 2009;53:63–70.CrossRefPubMed Wegener B, Schrimpf FM, Pietschmann MF, Milz S, Berger-Lohr M, Bergschmidt P, et al. Matrix-guided cartilage regeneration in chondral defects. Biotechnol Appl Biochem. 2009;53:63–70.CrossRefPubMed
10.
go back to reference Ebert JR, Smith A, Fallon M, Butler R, Nairn R, Breidahl W, Wood DJ. Incidence, degree, and development of graft hypertrophy 24 months after matrix-induced autologous chondrocyte implantation: association with clinical outcomes. Am J Sports Med. 2015;43(9):2208–15.CrossRefPubMed Ebert JR, Smith A, Fallon M, Butler R, Nairn R, Breidahl W, Wood DJ. Incidence, degree, and development of graft hypertrophy 24 months after matrix-induced autologous chondrocyte implantation: association with clinical outcomes. Am J Sports Med. 2015;43(9):2208–15.CrossRefPubMed
11.
go back to reference Ebert JR, Fallon M, Smith A, Janes GC, Wood DJ. Prospective clinical and radiologic evaluation of patellofemoral matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2015;43:1362–72.CrossRefPubMed Ebert JR, Fallon M, Smith A, Janes GC, Wood DJ. Prospective clinical and radiologic evaluation of patellofemoral matrix-induced autologous chondrocyte implantation. Am J Sports Med. 2015;43:1362–72.CrossRefPubMed
12.
go back to reference Genovese E, Ronga M, Angeretti MG, Novario R, Leonardi A, Albrizio M, et al. Matrix-induced autologous chondrocyte implantation of the knee: mid-term and long-term follow-up by MR arthrography. Skeletal Radiol. 2011;40:47–56.CrossRefPubMed Genovese E, Ronga M, Angeretti MG, Novario R, Leonardi A, Albrizio M, et al. Matrix-induced autologous chondrocyte implantation of the knee: mid-term and long-term follow-up by MR arthrography. Skeletal Radiol. 2011;40:47–56.CrossRefPubMed
13.
go back to reference Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med. 2014;42:1417–25.CrossRefPubMed Farr J, Tabet SK, Margerrison E, Cole BJ. Clinical, radiographic, and histological outcomes after cartilage repair with particulated juvenile articular cartilage: a 2-year prospective study. Am J Sports Med. 2014;42:1417–25.CrossRefPubMed
14.
go back to reference Stevens HY, Shockley BE, Willett NJ, Lin AS, Raji Y, Guldberg RE, Labib SA. Particulated juvenile articular cartilage implantation in the knee: a 3-year EPIC-μCT and histological examination. Cartilage. 2014;5:74–7.CrossRefPubMedPubMedCentral Stevens HY, Shockley BE, Willett NJ, Lin AS, Raji Y, Guldberg RE, Labib SA. Particulated juvenile articular cartilage implantation in the knee: a 3-year EPIC-μCT and histological examination. Cartilage. 2014;5:74–7.CrossRefPubMedPubMedCentral
15.
go back to reference Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39:1170–9.CrossRefPubMed Cole BJ, Farr J, Winalski CS, Hosea T, Richmond J, Mandelbaum B, De Deyne PG. Outcomes after a single-stage procedure for cell-based cartilage repair: a prospective clinical safety trial with 2-year follow-up. Am J Sports Med. 2011;39:1170–9.CrossRefPubMed
16.
go back to reference Freed LE, Grande DA, Lingbin Z, Emmanual J, Marquis JC, Langer R. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res. 1994;28:891–9.CrossRefPubMed Freed LE, Grande DA, Lingbin Z, Emmanual J, Marquis JC, Langer R. Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds. J Biomed Mater Res. 1994;28:891–9.CrossRefPubMed
17.
go back to reference Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336:1124–8.CrossRefPubMed Seliktar D. Designing cell-compatible hydrogels for biomedical applications. Science. 2012;336:1124–8.CrossRefPubMed
18.
go back to reference Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R. . Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg. 1999;104:1014–22.CrossRefPubMed Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Yaremchuk M, Langer R. . Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast Reconstr Surg. 1999;104:1014–22.CrossRefPubMed
19.
go back to reference Sims CD, Butler PE, Cao YL, Casanova R, Randolph MA, Black A, et al. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg. 1998;101:1580–5.CrossRefPubMed Sims CD, Butler PE, Cao YL, Casanova R, Randolph MA, Black A, et al. Tissue engineered neocartilage using plasma derived polymer substrates and chondrocytes. Plast Reconstr Surg. 1998;101:1580–5.CrossRefPubMed
20.
go back to reference Sims CD, Butler PE, Casanova R, Lee BT, Randolph MA, Lee WP, et al. Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg. 1996;98:843–50.CrossRefPubMed Sims CD, Butler PE, Casanova R, Lee BT, Randolph MA, Lee WP, et al. Injectable cartilage using polyethylene oxide polymer substrates. Plast Reconstr Surg. 1996;98:843–50.CrossRefPubMed
21.
go back to reference Bryant SJ, Anseth KS, Lee DA, Bader DL. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2004;22:1143–9.CrossRef Bryant SJ, Anseth KS, Lee DA, Bader DL. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain. Journal of orthopaedic research: official publication of the Orthopaedic Research Society. 2004;22:1143–9.CrossRef
23.
go back to reference Bichara DA, Zhao X, Bodugoz-Senturk H, Ballyns FP, Oral E, Randolph MA, et al. Porous poly(vinyl alcohol)-hydrogel matrix-engineered biosynthetic cartilage. Tissue Eng Part A. 2011;17:301–9.CrossRefPubMed Bichara DA, Zhao X, Bodugoz-Senturk H, Ballyns FP, Oral E, Randolph MA, et al. Porous poly(vinyl alcohol)-hydrogel matrix-engineered biosynthetic cartilage. Tissue Eng Part A. 2011;17:301–9.CrossRefPubMed
24.
go back to reference Ko CY, Ku KL, Yang SR, Lin TY, Peng S, Peng YS, et al. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med. 2013. doi: 10.1002/term.1846. [Epub ahead of print] Ko CY, Ku KL, Yang SR, Lin TY, Peng S, Peng YS, et al. In vitro and in vivo co-culture of chondrocytes and bone marrow stem cells in photocrosslinked PCL-PEG-PCL hydrogels enhances cartilage formation. J Tissue Eng Regen Med. 2013. doi: 10.​1002/​term.​1846. [Epub ahead of print]
25.
go back to reference Yu Y, Brouillette MJ, Seol D, Zheng H, Buckwalter JA, Martin JA. Functional full-thickness articular cartilage repair by rhSDF-1alpha loaded fibrin/ha hydrogel network via chondrogenic progenitor cells homing. Arthritis & rheumatology. 2015;67(5):1274–85.CrossRef Yu Y, Brouillette MJ, Seol D, Zheng H, Buckwalter JA, Martin JA. Functional full-thickness articular cartilage repair by rhSDF-1alpha loaded fibrin/ha hydrogel network via chondrogenic progenitor cells homing. Arthritis & rheumatology. 2015;67(5):1274–85.CrossRef
26.
go back to reference Blum MM, Ovaert TC. Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue. Mater Sci Eng C Mater Biol Appl. 2013;33:377–4383.CrossRef Blum MM, Ovaert TC. Low friction hydrogel for articular cartilage repair: evaluation of mechanical and tribological properties in comparison with natural cartilage tissue. Mater Sci Eng C Mater Biol Appl. 2013;33:377–4383.CrossRef
27.
go back to reference Ibusuki S, Papadopoulos A, Ranka MP, Halbesma GJ, Randolph MA, Redmond RW, et al. Engineering cartilage in a photochemically crosslinked collagen gel. J Knee Surg. 2009;22:72–81.CrossRefPubMed Ibusuki S, Papadopoulos A, Ranka MP, Halbesma GJ, Randolph MA, Redmond RW, et al. Engineering cartilage in a photochemically crosslinked collagen gel. J Knee Surg. 2009;22:72–81.CrossRefPubMed
28.
go back to reference Boere KW, Visser J, Seyednejad H, Rahimian S, Gawlitta D, van Steenbergen MJ, et al. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomater. 2014;10:2602–11.CrossRefPubMed Boere KW, Visser J, Seyednejad H, Rahimian S, Gawlitta D, van Steenbergen MJ, et al. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomater. 2014;10:2602–11.CrossRefPubMed
29.
go back to reference Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002;23:4315–23.CrossRefPubMed Burdick JA, Anseth KS. Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering. Biomaterials. 2002;23:4315–23.CrossRefPubMed
30.
go back to reference Bryant SJ, Anseth KS. The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials. 2001;22:619–26.CrossRefPubMed Bryant SJ, Anseth KS. The effects of scaffold thickness on tissue engineered cartilage in photocrosslinked poly(ethylene oxide) hydrogels. Biomaterials. 2001;22:619–26.CrossRefPubMed
31.
go back to reference Martens PJ, Bryant SJ, Anseth KS. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules. 2003;4:283–92.CrossRefPubMed Martens PJ, Bryant SJ, Anseth KS. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering. Biomacromolecules. 2003;4:283–92.CrossRefPubMed
32.
go back to reference Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res. 2002;59:63–72.CrossRefPubMed Bryant SJ, Anseth KS. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels. J Biomed Mater Res. 2002;59:63–72.CrossRefPubMed
33.
go back to reference Bryant SJ, Nuttelman CR, Anseth KS. The effects of crosslinking density on cartilage formation in photocrosslinkable hydrogels. Biomed Sci Instrum. 1999;35:309–14.PubMed Bryant SJ, Nuttelman CR, Anseth KS. The effects of crosslinking density on cartilage formation in photocrosslinkable hydrogels. Biomed Sci Instrum. 1999;35:309–14.PubMed
34.
go back to reference Rice MA, Anseth KS. Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. J Biomed Mater Res A. 2004;70:560–8.CrossRefPubMed Rice MA, Anseth KS. Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development. J Biomed Mater Res A. 2004;70:560–8.CrossRefPubMed
35.
go back to reference Tognana E, Chen F, Padera RF, Leddy HA, Christensen SE, Guilak F, et al. Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro. Osteoarthritis Cartilage. 2005;13:129–38.CrossRefPubMed Tognana E, Chen F, Padera RF, Leddy HA, Christensen SE, Guilak F, et al. Adjacent tissues (cartilage, bone) affect the functional integration of engineered calf cartilage in vitro. Osteoarthritis Cartilage. 2005;13:129–38.CrossRefPubMed
36.
go back to reference Taylor KB, Jeffree GM. A new basic metachromatic dye, I:9-dimethyl methylene blue. Histochem J. 1969;1:199–204.CrossRefPubMed Taylor KB, Jeffree GM. A new basic metachromatic dye, I:9-dimethyl methylene blue. Histochem J. 1969;1:199–204.CrossRefPubMed
37.
go back to reference Reddy GK, Enwemeka CS. A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem. 1996;29:225–9.CrossRefPubMed Reddy GK, Enwemeka CS. A simplified method for the analysis of hydroxyproline in biological tissues. Clin Biochem. 1996;29:225–9.CrossRefPubMed
38.
go back to reference Burdick JA, Chung C, Jia X, Randolph MA, Langer R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules. 2005;6:386–91.CrossRefPubMedPubMedCentral Burdick JA, Chung C, Jia X, Randolph MA, Langer R. Controlled degradation and mechanical behavior of photopolymerized hyaluronic acid networks. Biomacromolecules. 2005;6:386–91.CrossRefPubMedPubMedCentral
39.
go back to reference Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A. 2002;99:9996–10001.CrossRefPubMedPubMedCentral Kisiday J, Jin M, Kurz B, Hung H, Semino C, Zhang S, Grodzinsky AJ. Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair. Proc Natl Acad Sci U S A. 2002;99:9996–10001.CrossRefPubMedPubMedCentral
40.
go back to reference Nettles DL, Elder SH, Gilbert JA. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng. 2002;8:1009–16.CrossRefPubMed Nettles DL, Elder SH, Gilbert JA. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng. 2002;8:1009–16.CrossRefPubMed
41.
go back to reference Sridhar BV, Doyle NR, Randolph MA, Anseth KS. Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J Biomed Mater Res A. 2014;102(12):4464–72.PubMedPubMedCentral Sridhar BV, Doyle NR, Randolph MA, Anseth KS. Covalently tethered TGF-β1 with encapsulated chondrocytes in a PEG hydrogel system enhances extracellular matrix production. J Biomed Mater Res A. 2014;102(12):4464–72.PubMedPubMedCentral
42.
go back to reference Omobono MA, Zhao X, Furlong MA, Kwon CH, Gill TJ, Randolph MA, Redmond RW. Enhancing the stiffness of collagen hydrogels for delivery of encapsulated chondrocytes to articular lesions for cartilage regeneration. J Biomed Mater Res A. 2015;103:1332–8.CrossRefPubMed Omobono MA, Zhao X, Furlong MA, Kwon CH, Gill TJ, Randolph MA, Redmond RW. Enhancing the stiffness of collagen hydrogels for delivery of encapsulated chondrocytes to articular lesions for cartilage regeneration. J Biomed Mater Res A. 2015;103:1332–8.CrossRefPubMed
43.
go back to reference Reindel ES, Ayroso AM, Chen AC, Chun DM, Schinagl RM, Sah RL. Integrative repair of articular cartilage in vitro: adhesive strength of the interface region. J Orthop Res. 1995;13:751–60.CrossRefPubMed Reindel ES, Ayroso AM, Chen AC, Chun DM, Schinagl RM, Sah RL. Integrative repair of articular cartilage in vitro: adhesive strength of the interface region. J Orthop Res. 1995;13:751–60.CrossRefPubMed
44.
go back to reference Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G. Integration of engineered cartilage. J Orthop Res. 2001;19:1089–97.CrossRefPubMed Obradovic B, Martin I, Padera RF, Treppo S, Freed LE, Vunjak-Novakovic G. Integration of engineered cartilage. J Orthop Res. 2001;19:1089–97.CrossRefPubMed
45.
go back to reference Giurea A, DiMicco MA, Akeson WH, Sah RL. Development-associated differences in integrative cartilage repair: roles of biosynthesis and matrix. J Orthop Res. 2002;20:1274–81.CrossRefPubMed Giurea A, DiMicco MA, Akeson WH, Sah RL. Development-associated differences in integrative cartilage repair: roles of biosynthesis and matrix. J Orthop Res. 2002;20:1274–81.CrossRefPubMed
46.
go back to reference DiMicco MA, Sah RL. Integrative cartilage repair: adhesive strength is correlated with collagen deposition. J Orthop Res. 2001;19:1105–12.CrossRefPubMed DiMicco MA, Sah RL. Integrative cartilage repair: adhesive strength is correlated with collagen deposition. J Orthop Res. 2001;19:1105–12.CrossRefPubMed
Metadata
Title
Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels
Authors
Xing Zhao
Anestis Papadopoulos
Shinichi Ibusuki
David A. Bichara
Daniel B. Saris
Jos Malda
Kristi S. Anseth
Thomas J. Gill
Mark A. Randolph
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-1100-1

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue