Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Research article

Feasibility of four-dimensional preoperative simulation for elbow debridement arthroplasty

Authors: Michiro Yamamoto, Yukimi Murakami, Katsuyuki Iwatsuki, Shigeru Kurimoto, Hitoshi Hirata

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Background

Recent advances in imaging modalities have enabled three-dimensional preoperative simulation. A four-dimensional preoperative simulation system would be useful for debridement arthroplasty of primary degenerative elbow osteoarthritis because it would be able to detect the impingement lesions.

Methods

We developed a four-dimensional simulation system by adding the anatomical axis to the three-dimensional computed tomography scan data of the affected arm in one position. Eleven patients with primary degenerative elbow osteoarthritis were included. A “two rings” method was used to calculate the flexion-extension axis of the elbow by converting the surface of the trochlea and capitellum into two rings. A four-dimensional simulation movie was created and showed the optimal range of motion and the impingement area requiring excision. To evaluate the reliability of the flexion-extension axis, interobserver and intraobserver reliabilities regarding the assessment of bony overlap volumes were calculated twice for each patient by two authors. Patients were treated by open or arthroscopic debridement arthroplasties. Pre- and postoperative examinations included elbow range of motion measurement, and completion of the patient-rated questionnaire Hand20, Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score, and the Mayo Elbow Performance Score.

Results

Measurement of the bony overlap volume showed an intraobserver intraclass correlation coefficient of 0.93 and 0.90, and an interobserver intraclass correlation coefficient of 0.94. The mean elbow flexion-extension arc significantly improved from 101° to 125°. The mean Hand20 score significantly improved from 52 to 22. The mean Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score significantly improved from 67 to 88. The mean Mayo Elbow Performance Score significantly improved from 71 to 91 at the final follow-up evaluation.

Conclusion

We showed that four-dimensional, preoperative simulation can be generated by adding the rotation axis to the one-position, three-dimensional computed tomography image of the affected arm. This method is feasible for elbow debridement arthroplasty.
Appendix
Available only for authorised users
Literature
1.
go back to reference Morrey BF. Primary osteoarthritis: ulnohumeral arthroplasty. In: Morrey BF, Sanchez-Sotelo J, editors. The elbow and its disorders. 4th ed. Philadelphia: Saunders; 2009. p. 1043–55.CrossRef Morrey BF. Primary osteoarthritis: ulnohumeral arthroplasty. In: Morrey BF, Sanchez-Sotelo J, editors. The elbow and its disorders. 4th ed. Philadelphia: Saunders; 2009. p. 1043–55.CrossRef
2.
go back to reference Tsuge K, Mizuseki T. Debridement arthroplasty for advanced primary osteoarthritis of the elbow. Results of a new technique used for 29 elbows. J Bone Joint Surg (Br). 1994;76:641–6. Tsuge K, Mizuseki T. Debridement arthroplasty for advanced primary osteoarthritis of the elbow. Results of a new technique used for 29 elbows. J Bone Joint Surg (Br). 1994;76:641–6.
3.
go back to reference Oka Y. Debridement arthroplasty for osteoarthrosis of the elbow: 50 patients followed mean 5 years. Acta Orthop Scand. 2000;71:185–90.CrossRefPubMed Oka Y. Debridement arthroplasty for osteoarthrosis of the elbow: 50 patients followed mean 5 years. Acta Orthop Scand. 2000;71:185–90.CrossRefPubMed
4.
go back to reference Wada T, Isogai S, Ishii S, Yamashita T. Debridement arthroplasty for primary osteoarthritis of the elbow. J Bone Joint Surg Am. 2004;86(2):233–41.CrossRefPubMed Wada T, Isogai S, Ishii S, Yamashita T. Debridement arthroplasty for primary osteoarthritis of the elbow. J Bone Joint Surg Am. 2004;86(2):233–41.CrossRefPubMed
5.
go back to reference Hattori Y, Doi K, Sakamoto S, Hoshino S, Dodakundi C. Capsulectomy and debridement for primary osteoarthritis of the elbow through a medial trans-flexor approach. J Hand Surg [Am]. 2011;36(10):1652–8.CrossRef Hattori Y, Doi K, Sakamoto S, Hoshino S, Dodakundi C. Capsulectomy and debridement for primary osteoarthritis of the elbow through a medial trans-flexor approach. J Hand Surg [Am]. 2011;36(10):1652–8.CrossRef
6.
go back to reference Steinmann SP, King GJ, SavoieIII FH. Arthroscopic treatment of the arthritic elbow. J Bone Joint Surg Am. 2005;87(9):2113–21.CrossRef Steinmann SP, King GJ, SavoieIII FH. Arthroscopic treatment of the arthritic elbow. J Bone Joint Surg Am. 2005;87(9):2113–21.CrossRef
7.
go back to reference Miyake J, Shimada K, Oka K, Tanaka H, Sugamoto K, Yoshikawa H, Murase T. Arthroscopic debridement in the treatment of patients with osteoarthritis of the elbow, based on computer simulation. Bone Joint J. 2014;96(2):237–41.CrossRefPubMed Miyake J, Shimada K, Oka K, Tanaka H, Sugamoto K, Yoshikawa H, Murase T. Arthroscopic debridement in the treatment of patients with osteoarthritis of the elbow, based on computer simulation. Bone Joint J. 2014;96(2):237–41.CrossRefPubMed
8.
go back to reference Underberg RW, Lagerwaard FJ, Cuijpers JP, Slotman BJ, van Sörnsen de Koste JR, Senan S. Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys. 2004;60(4):1283–90.CrossRefPubMed Underberg RW, Lagerwaard FJ, Cuijpers JP, Slotman BJ, van Sörnsen de Koste JR, Senan S. Four-dimensional CT scans for treatment planning in stereotactic radiotherapy for stage I lung cancer. Int J Radiat Oncol Biol Phys. 2004;60(4):1283–90.CrossRefPubMed
9.
go back to reference Sarrut D, Boldea V, Miguet S, Ginestet C. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans. Med Phys. 2006;33(3):605–17.CrossRefPubMed Sarrut D, Boldea V, Miguet S, Ginestet C. Simulation of four-dimensional CT images from deformable registration between inhale and exhale breath-hold CT scans. Med Phys. 2006;33(3):605–17.CrossRefPubMed
10.
go back to reference Dionysiou DD, Stamatakos GS, Uzunoglu NK, Nikita KS, Marioli A. A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J Theor Biol. 2004;230(1):1–20.CrossRefPubMed Dionysiou DD, Stamatakos GS, Uzunoglu NK, Nikita KS, Marioli A. A four-dimensional simulation model of tumour response to radiotherapy in vivo: parametric validation considering radiosensitivity, genetic profile and fractionation. J Theor Biol. 2004;230(1):1–20.CrossRefPubMed
11.
go back to reference Duck TR, Dunning CE, King GJ, Johnson JA. Variability and repeatability of the flexion axis at the ulnohumeral joint. J Orthop Res. 2003;21(3):399–404.CrossRefPubMed Duck TR, Dunning CE, King GJ, Johnson JA. Variability and repeatability of the flexion axis at the ulnohumeral joint. J Orthop Res. 2003;21(3):399–404.CrossRefPubMed
13.
14.
go back to reference Ericson A, Arndt A, Stark A, Wretenberg P, Lundberg A. Variation in the position and orientation of the elbow flexion axis. J Bone Joint Surg (Br). 2003;85(4):538–44.CrossRef Ericson A, Arndt A, Stark A, Wretenberg P, Lundberg A. Variation in the position and orientation of the elbow flexion axis. J Bone Joint Surg (Br). 2003;85(4):538–44.CrossRef
15.
go back to reference Hamilton B, Whiteley R, Almusa E, Roger B, Geertsema C, Tol JL. Excellent reliability for MRI grading and prognostic parameters in acute hamstring injuries. Br J Sports Med. 2014;48(18):1385–7.CrossRefPubMed Hamilton B, Whiteley R, Almusa E, Roger B, Geertsema C, Tol JL. Excellent reliability for MRI grading and prognostic parameters in acute hamstring injuries. Br J Sports Med. 2014;48(18):1385–7.CrossRefPubMed
16.
go back to reference Suzuki M, Kurimoto S, Shinohara T, Tatebe M, Imaeda T, Hirata H. Development and validation of an illustrated questionnaire to evaluate disabilities of the upper limb. J Bone Joint Surg (Br). 2010;92(7):963–9.CrossRef Suzuki M, Kurimoto S, Shinohara T, Tatebe M, Imaeda T, Hirata H. Development and validation of an illustrated questionnaire to evaluate disabilities of the upper limb. J Bone Joint Surg (Br). 2010;92(7):963–9.CrossRef
17.
go back to reference Morrey B, Adams R. Semiconstrained arthroplasty for the treatment of rheumatoid arthritis of the elbow. J Bone Joint Surg Am. 1992;74(4):479–90.CrossRefPubMed Morrey B, Adams R. Semiconstrained arthroplasty for the treatment of rheumatoid arthritis of the elbow. J Bone Joint Surg Am. 1992;74(4):479–90.CrossRefPubMed
18.
go back to reference de González AB, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345–51.CrossRef de González AB, Darby S. Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries. Lancet. 2004;363(9406):345–51.CrossRef
19.
go back to reference Nishiwaki M, Willing R, Johnson JA, King GJW, Athwal GS. Identifying the location and volume of bony impingement in elbow osteoarthritis by 3-dimensional computational modeling. J Hand Surg [Am]. 2013;38(7):1370–6.CrossRef Nishiwaki M, Willing R, Johnson JA, King GJW, Athwal GS. Identifying the location and volume of bony impingement in elbow osteoarthritis by 3-dimensional computational modeling. J Hand Surg [Am]. 2013;38(7):1370–6.CrossRef
20.
go back to reference Falk V, Mourgues F, Adhami L, Jacobs S, Thiele H, Nitzsche S, Mohr FW, Coste-Manière È. Cardio navigation: planning, simulation, and augmented reality in robotic assisted endoscopic bypass grafting. Ann Thorac Surg. 2005;79(6):2040–7.CrossRefPubMed Falk V, Mourgues F, Adhami L, Jacobs S, Thiele H, Nitzsche S, Mohr FW, Coste-Manière È. Cardio navigation: planning, simulation, and augmented reality in robotic assisted endoscopic bypass grafting. Ann Thorac Surg. 2005;79(6):2040–7.CrossRefPubMed
Metadata
Title
Feasibility of four-dimensional preoperative simulation for elbow debridement arthroplasty
Authors
Michiro Yamamoto
Yukimi Murakami
Katsuyuki Iwatsuki
Shigeru Kurimoto
Hitoshi Hirata
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-0996-9

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue