Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2016

Open Access 01-12-2016 | Research article

Intra-articular injection of mono-iodoacetate induces osteoarthritis of the hip in rats

Authors: Shuichi Miyamoto, Junichi Nakamura, Seiji Ohtori, Sumihisa Orita, Takanori Omae, Takayuki Nakajima, Takane Suzuki, Kazuhisa Takahashi

Published in: BMC Musculoskeletal Disorders | Issue 1/2016

Login to get access

Abstract

Background

The mechanism for hip pain has been unclear because of a lack of experimental animal models. We aimed to establish an intra-articular injection technique to the rat hip and to document the effect of intra-articular mono-iodoacetate (MIA) injection to the rat hip with radiography and histology.

Methods

Using 60 6-week-old male Sprague Dawley rats, 25 μl of sterile saline (control group; n = 30) and 25 μl of sterile saline with 2 mg of MIA (MIA group; n = 30) was injected into the right hip joints via posterior approach using a 27G needle. The animals were examined with X-ray and histology 7, 14, 28, 42, and 56 days later (MIA group [n = 6] and control group [n = 6], respectively).

Results

The MIA group showed progressive radiographic changes to the hip joint during the experimental period, whereas the control group maintained a normal appearance. The microanatomic appearance was consistent with X-ray images of progressive destruction in the MIA group and normal tissue in the control group. Osteoarthritic (OA) changes became apparent at 42 and 56 days in the MIA group.

Conclusions

We established an intra-articular injection technique to the rat hip, creating a hip OA model in the rat by intra-articular injection of MIA.
Literature
1.
go back to reference Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986;29:1039–49.CrossRefPubMed Altman R, Asch E, Bloch D, et al. Development of criteria for the classification and reporting of osteoarthritis. Classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum. 1986;29:1039–49.CrossRefPubMed
2.
go back to reference Nakamura J, Oinuma K, Ohtori S, et al. Distribution of hip pain in osteoarthritis patients secondary to developmental dysplasia of the hip. Mod Rheumatol. 2013;23:119–24.CrossRefPubMed Nakamura J, Oinuma K, Ohtori S, et al. Distribution of hip pain in osteoarthritis patients secondary to developmental dysplasia of the hip. Mod Rheumatol. 2013;23:119–24.CrossRefPubMed
3.
go back to reference Shigemura T, Ohtori S, Kishida S, et al. Neuropathic pain in patients with osteoarthritis of hip joint. Eur Orthop Traumatol. 2011;2:73–7.CrossRef Shigemura T, Ohtori S, Kishida S, et al. Neuropathic pain in patients with osteoarthritis of hip joint. Eur Orthop Traumatol. 2011;2:73–7.CrossRef
5.
6.
go back to reference Takeshita M, Nakamura J, Ohtori S, et al. Sensory innervation and inflammatory cytokines in hypertrophic synovia associated with pain transmission in osteoarthritis of the hip: a case control study. Rheumatology (Oxford). 2012;51:1790–5.CrossRef Takeshita M, Nakamura J, Ohtori S, et al. Sensory innervation and inflammatory cytokines in hypertrophic synovia associated with pain transmission in osteoarthritis of the hip: a case control study. Rheumatology (Oxford). 2012;51:1790–5.CrossRef
7.
go back to reference Abe H, Sakai T, Ando W, et al. Synovial joint fluid cytokine levels in hip disease. Rheumatology (Oxford). 2014;53:165–72.CrossRef Abe H, Sakai T, Ando W, et al. Synovial joint fluid cytokine levels in hip disease. Rheumatology (Oxford). 2014;53:165–72.CrossRef
8.
go back to reference Kuroda K, Kabata T, Hayashi K, et al. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression. BMC Musculoskelet Disord. 2015;16:236.CrossRefPubMedPubMedCentral Kuroda K, Kabata T, Hayashi K, et al. The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression. BMC Musculoskelet Disord. 2015;16:236.CrossRefPubMedPubMedCentral
9.
go back to reference Janusz MJ, Bendele AM, Brown KK, et al. Induction of osteoarthritis in the rat by surgical tear of the meniscus: inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis Cart. 2002;10:785–91.CrossRef Janusz MJ, Bendele AM, Brown KK, et al. Induction of osteoarthritis in the rat by surgical tear of the meniscus: inhibition of joint damage by a matrix metalloproteinase inhibitor. Osteoarthritis Cart. 2002;10:785–91.CrossRef
10.
go back to reference Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone. 2006;38:234–43.CrossRefPubMed Hayami T, Pickarski M, Zhuo Y, et al. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone. 2006;38:234–43.CrossRefPubMed
11.
go back to reference Dai L, Zhang X, Hu X, et al. Silencing of miR-101 prevents cartilage degradation by regulating extracellular matrix-related genes in a rat model of osteoarthritis. Mol Ther. 2015;23:1331–40.CrossRefPubMed Dai L, Zhang X, Hu X, et al. Silencing of miR-101 prevents cartilage degradation by regulating extracellular matrix-related genes in a rat model of osteoarthritis. Mol Ther. 2015;23:1331–40.CrossRefPubMed
12.
go back to reference Kalbhen DA. Chemical model of osteoarthritis – a pharmacological evaluation. J Rheumatol. 1987;14:130–1.PubMed Kalbhen DA. Chemical model of osteoarthritis – a pharmacological evaluation. J Rheumatol. 1987;14:130–1.PubMed
13.
go back to reference Van der Kraan PM, Vitters EL, van de Putte LB, et al. Development of osteoarthritic lesions in mice by “metabolic” and “mechanical” alterations in the knee joints. Am J Pathol. 1989;135:1001–14.PubMedPubMedCentral Van der Kraan PM, Vitters EL, van de Putte LB, et al. Development of osteoarthritic lesions in mice by “metabolic” and “mechanical” alterations in the knee joints. Am J Pathol. 1989;135:1001–14.PubMedPubMedCentral
15.
go back to reference Fernihough J, Gentry C, Malcangio M, et al. Pain related behaviour in two models of osteoarthritis in the rat knee. Pain. 2004;112:83–93.CrossRefPubMed Fernihough J, Gentry C, Malcangio M, et al. Pain related behaviour in two models of osteoarthritis in the rat knee. Pain. 2004;112:83–93.CrossRefPubMed
16.
go back to reference Orita S, Ishikawa T, Miyagi M, et al. Pain-related sensory innervation in monoiodoacetate-induced osteoarthritis in rat knees that gradually develops neuronal injury in addition to inflammatory pain. BMC Musculoskelet Disord. 2011;12:134.CrossRefPubMedPubMedCentral Orita S, Ishikawa T, Miyagi M, et al. Pain-related sensory innervation in monoiodoacetate-induced osteoarthritis in rat knees that gradually develops neuronal injury in addition to inflammatory pain. BMC Musculoskelet Disord. 2011;12:134.CrossRefPubMedPubMedCentral
17.
go back to reference Mankin H, Dorfman H, Lippiello L, et al. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971;53:523–37.PubMed Mankin H, Dorfman H, Lippiello L, et al. Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am. 1971;53:523–37.PubMed
18.
go back to reference Guzman RE, Evans MG, Bove S, et al. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol. 2003;31:619–24.CrossRefPubMed Guzman RE, Evans MG, Bove S, et al. Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol. 2003;31:619–24.CrossRefPubMed
20.
go back to reference Nakajima T, Ohtori S, Inoue G, et al. The characteristics of dorsal-root ganglia and sensory innervation of the hip in rats. J Bone Joint Surg (Br). 2008;90:254–7.CrossRef Nakajima T, Ohtori S, Inoue G, et al. The characteristics of dorsal-root ganglia and sensory innervation of the hip in rats. J Bone Joint Surg (Br). 2008;90:254–7.CrossRef
21.
go back to reference Omae T, Nakamura J, Ohtori S, et al. A novel rat model of hip pain by intra-articular injection of nerve growth factor—characteristics of sensory innervation and inflammatory arthritis. Mod Rheumatol. 2015;4:1–19 [Epub ahead of print]. Omae T, Nakamura J, Ohtori S, et al. A novel rat model of hip pain by intra-articular injection of nerve growth factor—characteristics of sensory innervation and inflammatory arthritis. Mod Rheumatol. 2015;4:1–19 [Epub ahead of print].
22.
go back to reference Miyagi M, Ishikawa T, Kamoda H, et al. Assessment of pain behavior in a rat model of intervertebral disc injury using the CatWalk gait analysis system. Spine (Phila Pa 1976). 2013;38:1459–65.CrossRef Miyagi M, Ishikawa T, Kamoda H, et al. Assessment of pain behavior in a rat model of intervertebral disc injury using the CatWalk gait analysis system. Spine (Phila Pa 1976). 2013;38:1459–65.CrossRef
23.
go back to reference Yamazaki H, Ochiai N, Kenmoku T, et al. Assessment of pain-related behavior and pro-inflammatory cytokine levels in the rat rotator cuff tear model. J Orthop Res. 2014;32:286–90.CrossRefPubMed Yamazaki H, Ochiai N, Kenmoku T, et al. Assessment of pain-related behavior and pro-inflammatory cytokine levels in the rat rotator cuff tear model. J Orthop Res. 2014;32:286–90.CrossRefPubMed
Metadata
Title
Intra-articular injection of mono-iodoacetate induces osteoarthritis of the hip in rats
Authors
Shuichi Miyamoto
Junichi Nakamura
Seiji Ohtori
Sumihisa Orita
Takanori Omae
Takayuki Nakajima
Takane Suzuki
Kazuhisa Takahashi
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2016
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-016-0985-z

Other articles of this Issue 1/2016

BMC Musculoskeletal Disorders 1/2016 Go to the issue