Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2015

Open Access 01-12-2015 | Research article

Developing an animal model of Dupuytren’s disease by orthotopic transplantation of human fibroblasts into athymic rat

Authors: Latha Satish, Bradley Palmer, Fang Liu, Loukia Papatheodorou, Lora Rigatti, Mark E. Baratz, Sandeep Kathju

Published in: BMC Musculoskeletal Disorders | Issue 1/2015

Login to get access

Abstract

Background

Dupuytren’s disease (DD) is a slow, progressive fibroproliferative disorder affecting the palms of the hands. The disease is characterized by the formation of collagen rich- cords which gradually shorten by the action of myofibroblasts resulting in finger contractures. It is a disease that is confined to humans, and a major limiting factor in investigating this disorder has been the lack of a faithful animal model that can recapitulate its distinct biology. The aim of this study was to develop such a model by determining if Dupuytren’s disease (DD)- and control carpal tunnel (CT)-derived fibroblasts could survive in the forepaw of the nude rats and continue to exhibit the distinct characteristics they display in in vitro cultures.

Methods

1x107 fluorescently labeled DD- and CT-derived fibroblasts were transplanted into the left and right forepaws of nude rats respectively. Cells were tracked at regular intervals for a period of two months by quantifying emitted fluorescent signal using an IVIS imaging system. After a period of 62 days rat forepaw connective tissues were harvested for histology and total RNA was isolated. Human-specific probes were used to perform real time RT-PCR assays to examine the expression patterns of gene products associated with fibrosis in DD. Rat forepaw skin was also harvested to serve as an internal control.

Results

Both CT- and DD-derived fibroblasts survived for a period of 62 days, but DD-derived cells showed a significantly greater level of persistent fluorescent signal at the end of this time than did CT-derived cells. mRNA expression levels of α-smooth muscle actin (α-SMA), type I- and type III- collagens were all significantly elevated in the forepaw receiving DD cord-derived fibroblasts in comparison to CT-derived fibroblasts. Masson’s trichrome stain confirmed increased collagen deposition in the forepaw that was injected with DD cord-derived fibroblasts.

Conclusions

For the first time we describe an animal model for Dupuytren’s disease at the orthotopic anatomical location. We further show that gene expression differences between control (CT) and diseased (DD) derived fibroblasts persist when these cells are transplanted to the forepaw of the nude rat. These preliminary findings indicate that, with further refinements, this animal model holds promise as a baseline for investigating novel therapeutic regimens to determine an effective strategy in treating DD.
Literature
1.
go back to reference Dibenedetti DB, Nguyen D, Zografos L, Ziemiecki R, Zhou X. Prevalence, incidence, and treatments of Dupuytren’s disease in the United States: Results from a population-based study. Hand (NY). 2011;6:149–58.CrossRef Dibenedetti DB, Nguyen D, Zografos L, Ziemiecki R, Zhou X. Prevalence, incidence, and treatments of Dupuytren’s disease in the United States: Results from a population-based study. Hand (NY). 2011;6:149–58.CrossRef
2.
go back to reference Hindocha S, John S, Stanley JK, Watson SJ, Bayat A. The heritability of Dupuytren’s disease: familial aggregation and its clinical significance. J Hand Surg [Am]. 2006;31:204–10.CrossRef Hindocha S, John S, Stanley JK, Watson SJ, Bayat A. The heritability of Dupuytren’s disease: familial aggregation and its clinical significance. J Hand Surg [Am]. 2006;31:204–10.CrossRef
3.
go back to reference Hu FZ, Nystrom A, Ahmed A, Palmguist M, Dopico R, Mossberg I, et al. Mapping of an autosomal dominant gene for Dupuytren’s contracture to chromosome 16q in a Swedish family. Clin Genet. 2005;68:424–9.CrossRefPubMed Hu FZ, Nystrom A, Ahmed A, Palmguist M, Dopico R, Mossberg I, et al. Mapping of an autosomal dominant gene for Dupuytren’s contracture to chromosome 16q in a Swedish family. Clin Genet. 2005;68:424–9.CrossRefPubMed
4.
go back to reference McFarlane RM. Patterns of the diseased fascia in the fingers in Dupuytren’s contracture. Plast Reconst Surg. 1974;54:31–44.CrossRefPubMed McFarlane RM. Patterns of the diseased fascia in the fingers in Dupuytren’s contracture. Plast Reconst Surg. 1974;54:31–44.CrossRefPubMed
5.
go back to reference Rayan GM. Clinical presentation and types of Dupuytren’s disease. Hand Clin. 1999;15:87–96.PubMed Rayan GM. Clinical presentation and types of Dupuytren’s disease. Hand Clin. 1999;15:87–96.PubMed
7.
go back to reference Vande Berg JS, Gelberman RH, Rudolph R, Johnson D, Sicurello P. Dupuytren’s disease: Comparative growth dynamics and morphology between cultured myofibroblasts (nodule) and fibroblasts (cord). J Orthop Res. 1984;2:247–56.CrossRefPubMed Vande Berg JS, Gelberman RH, Rudolph R, Johnson D, Sicurello P. Dupuytren’s disease: Comparative growth dynamics and morphology between cultured myofibroblasts (nodule) and fibroblasts (cord). J Orthop Res. 1984;2:247–56.CrossRefPubMed
8.
go back to reference Gabbiani G, Majno G, Ryan GB: The fibroblast as a contractile cell: the myofibroblast. In: Kulonen E, Pikkarainen J (eds.): Biology of Fibroblast. Academic Press, New York London, 1973; pp.139–154. Gabbiani G, Majno G, Ryan GB: The fibroblast as a contractile cell: the myofibroblast. In: Kulonen E, Pikkarainen J (eds.): Biology of Fibroblast. Academic Press, New York London, 1973; pp.139–154.
9.
go back to reference Shih B, Wijeratne D, Armstrong DJ, Lindau T, Day P, Bayat A. Identification of biomarkers in Dupuytren’s disease by comparative analysis of fibroblasts versus tissue biopsies in disease-specific phenotypes. J Hand Surg (Am). 2009;34:124–36.CrossRef Shih B, Wijeratne D, Armstrong DJ, Lindau T, Day P, Bayat A. Identification of biomarkers in Dupuytren’s disease by comparative analysis of fibroblasts versus tissue biopsies in disease-specific phenotypes. J Hand Surg (Am). 2009;34:124–36.CrossRef
11.
go back to reference Godtfredsen NS, Lucht H, Prescott E, Sorensen TI, Gronbaek M. A prospective study linked both alcohol and tobacco to Dupuytren’s disease. J Clin Epidemiol. 2004;57:858–63.CrossRefPubMed Godtfredsen NS, Lucht H, Prescott E, Sorensen TI, Gronbaek M. A prospective study linked both alcohol and tobacco to Dupuytren’s disease. J Clin Epidemiol. 2004;57:858–63.CrossRefPubMed
13.
go back to reference Kloen P. New insights in the development of Dupuytren’s Contracture: A review. Br J Plast Surg. 1999;52:629–35.CrossRefPubMed Kloen P. New insights in the development of Dupuytren’s Contracture: A review. Br J Plast Surg. 1999;52:629–35.CrossRefPubMed
14.
go back to reference Akyol A, Kiylioglu N, Copcu E, Guney E, Aydeniz A. Is diabetes mellitus type 2 a risk factor for Dupuytren’s contracture in the Mediterranean region? Plast Reconstr Surg. 2006;117:2105–6.CrossRefPubMed Akyol A, Kiylioglu N, Copcu E, Guney E, Aydeniz A. Is diabetes mellitus type 2 a risk factor for Dupuytren’s contracture in the Mediterranean region? Plast Reconstr Surg. 2006;117:2105–6.CrossRefPubMed
15.
go back to reference Howard JC, Varallo VM, Ross DC, Faber KJ, Roth JH, Seney S, et al. Wound healing-associated proteins Hsp47 and fibronectin are elevated in Dupuytren’s contracture. J Surg Res. 2004;117:232–8.CrossRefPubMed Howard JC, Varallo VM, Ross DC, Faber KJ, Roth JH, Seney S, et al. Wound healing-associated proteins Hsp47 and fibronectin are elevated in Dupuytren’s contracture. J Surg Res. 2004;117:232–8.CrossRefPubMed
16.
go back to reference Vi L, Feng L, Zhu RD, Wu Y, Satish L, Gan BS, et al. Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren’s disease and adjacent palmar fascia cells. Exp Cell Res. 2009;315:3574–86.CrossRefPubMedPubMedCentral Vi L, Feng L, Zhu RD, Wu Y, Satish L, Gan BS, et al. Periostin differentially induces proliferation, contraction and apoptosis of primary Dupuytren’s disease and adjacent palmar fascia cells. Exp Cell Res. 2009;315:3574–86.CrossRefPubMedPubMedCentral
17.
go back to reference Dolmans GH, Werker PM, Hennies HC, Furniss D, Festen EA, Franke L, et al. Wnt signaling and Dupuytren’s disease. N Engl J Med. 2011;365:307–17. Epub 2011 Jul 6.CrossRefPubMed Dolmans GH, Werker PM, Hennies HC, Furniss D, Festen EA, Franke L, et al. Wnt signaling and Dupuytren’s disease. N Engl J Med. 2011;365:307–17. Epub 2011 Jul 6.CrossRefPubMed
18.
go back to reference Hindman HB, Marty-Roix R, Tang JB, Jupiter JB, Simmons BP, Spector M. Regulation of expression of alpha-smooth muscle actin in cells of Dupuytren’s contracture. J Bone Joint Surg Br. 2003;85:448–55.CrossRefPubMed Hindman HB, Marty-Roix R, Tang JB, Jupiter JB, Simmons BP, Spector M. Regulation of expression of alpha-smooth muscle actin in cells of Dupuytren’s contracture. J Bone Joint Surg Br. 2003;85:448–55.CrossRefPubMed
19.
go back to reference Satish L, LaFramboise WA, O’Gorman DB, Johnson S, Janto B, Gan BS, et al. Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren’s Contracture. BMC Med Genomics. 2008;23:10.CrossRef Satish L, LaFramboise WA, O’Gorman DB, Johnson S, Janto B, Gan BS, et al. Identification of differentially expressed genes in fibroblasts derived from patients with Dupuytren’s Contracture. BMC Med Genomics. 2008;23:10.CrossRef
20.
go back to reference Satish L, LaFramboise WA, Johnson S, Vi L, Njarlangattil A, Raykha C, et al. Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren’s Contracture. BMC Med Genomics. 2012;5:15.CrossRefPubMedPubMedCentral Satish L, LaFramboise WA, Johnson S, Vi L, Njarlangattil A, Raykha C, et al. Fibroblasts from phenotypically normal palmar fascia exhibit molecular profiles highly similar to fibroblasts from active disease in Dupuytren’s Contracture. BMC Med Genomics. 2012;5:15.CrossRefPubMedPubMedCentral
21.
go back to reference Hindocha S, Stanley JK, Watson S, Bayat A. Dupuytren’s diathesis revisited: evaluation of prognostic indicators for risk of disease recurrence. J Hand Surg Am. 2006;31:1626–34.CrossRefPubMed Hindocha S, Stanley JK, Watson S, Bayat A. Dupuytren’s diathesis revisited: evaluation of prognostic indicators for risk of disease recurrence. J Hand Surg Am. 2006;31:1626–34.CrossRefPubMed
22.
go back to reference Hurst LC, Badalamente MA, Hentz VR, Hotchkiss RN, Kaplan FT, Meals RA, et al. CORD I Study Group. Injectable collagenase clostridium for Dupuytren’s contracture. N Engl J Med. 2009;361:968–79.CrossRefPubMed Hurst LC, Badalamente MA, Hentz VR, Hotchkiss RN, Kaplan FT, Meals RA, et al. CORD I Study Group. Injectable collagenase clostridium for Dupuytren’s contracture. N Engl J Med. 2009;361:968–79.CrossRefPubMed
23.
go back to reference Rozen WM, Edirisinghe Y, Crock J. Late complications of clinical clostridium histolyticum collagenase use in Dupuytren’s disease. PLoS One. 2012;7(8):e43406.CrossRefPubMedPubMedCentral Rozen WM, Edirisinghe Y, Crock J. Late complications of clinical clostridium histolyticum collagenase use in Dupuytren’s disease. PLoS One. 2012;7(8):e43406.CrossRefPubMedPubMedCentral
24.
go back to reference Povlsen B, Singh S: Acute double flexor tendon ruptures following injection of collagenase clostridium histolyticum (Xiapex) for Dupuytren’s contracture. BMJ Case Rep 2014, April 12. Povlsen B, Singh S: Acute double flexor tendon ruptures following injection of collagenase clostridium histolyticum (Xiapex) for Dupuytren’s contracture. BMJ Case Rep 2014, April 12.
25.
go back to reference Howard JC, Varallo VM, Ross DC, Roth JH, Faber KJ, Alman B, et al. Elevated levels of beta-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren’s disease cells are regulated by tension in vitro. BMC Musculoskelet Disord. 2003;4:16.CrossRefPubMedPubMedCentral Howard JC, Varallo VM, Ross DC, Roth JH, Faber KJ, Alman B, et al. Elevated levels of beta-catenin and fibronectin in three-dimensional collagen cultures of Dupuytren’s disease cells are regulated by tension in vitro. BMC Musculoskelet Disord. 2003;4:16.CrossRefPubMedPubMedCentral
26.
go back to reference Satish L, Baratz ME, Palmer B, Johnson S, Post JC, Ehrlich GD, Kathju S: Establishing an animal model of Dupuytren’s contracture by profiling genes associated with fibrosis. In Dupuytren’s Disease and Related Hyperproliferative Disorders. Principles, Research, and Clinical Perspectives. Ist Edition. Edited by Eaton C. et al. Springer-Verlag Berlin Heidelberg; 2012b: 101–108. Satish L, Baratz ME, Palmer B, Johnson S, Post JC, Ehrlich GD, Kathju S: Establishing an animal model of Dupuytren’s contracture by profiling genes associated with fibrosis. In Dupuytren’s Disease and Related Hyperproliferative Disorders. Principles, Research, and Clinical Perspectives. Ist Edition. Edited by Eaton C. et al. Springer-Verlag Berlin Heidelberg; 2012b: 101–108.
27.
go back to reference Larsen R, Takagishi N, Posch J. The pathogenesis of Dupuytren’s contracture. Experimental and further clinical observations. J Bone Joint Surg [Am]. 1960;42:993–1007. Larsen R, Takagishi N, Posch J. The pathogenesis of Dupuytren’s contracture. Experimental and further clinical observations. J Bone Joint Surg [Am]. 1960;42:993–1007.
28.
go back to reference Kischer CW, Pindur J, Madden J, Shetlar MR, Shetlar CL. Characterization of implants from Dupuytren’s contracture tissue in the nude (athymic) mouse. Proc Soc Exp Biol Med. 1989;190:268–74.CrossRefPubMed Kischer CW, Pindur J, Madden J, Shetlar MR, Shetlar CL. Characterization of implants from Dupuytren’s contracture tissue in the nude (athymic) mouse. Proc Soc Exp Biol Med. 1989;190:268–74.CrossRefPubMed
29.
go back to reference Kuhn MA, Payne WGG, Kierney PC, Lu LL, Smith PD, Siegler K, et al. Cytokine manipulation of explanted Dupuytren’s affected human palmar fascia. Int J Surg Investig. 2001;2:443–56.PubMed Kuhn MA, Payne WGG, Kierney PC, Lu LL, Smith PD, Siegler K, et al. Cytokine manipulation of explanted Dupuytren’s affected human palmar fascia. Int J Surg Investig. 2001;2:443–56.PubMed
30.
go back to reference Karkampouna S, Kruithof BP, Kloen P, Obdeijn MC, van der Laan AM, Tanke HJ, et al. Novel Ex Vivo Culture Method for the Study of Dupuytren’s Disease: Effects of TGFβ Type 1 Receptor Modulation by Antisense Oligonucleotides. Mol Ther Nucleic Acids. 2014;3:e142.CrossRefPubMedPubMedCentral Karkampouna S, Kruithof BP, Kloen P, Obdeijn MC, van der Laan AM, Tanke HJ, et al. Novel Ex Vivo Culture Method for the Study of Dupuytren’s Disease: Effects of TGFβ Type 1 Receptor Modulation by Antisense Oligonucleotides. Mol Ther Nucleic Acids. 2014;3:e142.CrossRefPubMedPubMedCentral
Metadata
Title
Developing an animal model of Dupuytren’s disease by orthotopic transplantation of human fibroblasts into athymic rat
Authors
Latha Satish
Bradley Palmer
Fang Liu
Loukia Papatheodorou
Lora Rigatti
Mark E. Baratz
Sandeep Kathju
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2015
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-015-0597-z

Other articles of this Issue 1/2015

BMC Musculoskeletal Disorders 1/2015 Go to the issue