Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2015

Open Access 01-12-2015 | Research article

Temporal gene expression profiling of the rat knee joint capsule during immobilization-induced joint contractures

Authors: Kayleigh Wong, Fangui Sun, Guy Trudel, Paola Sebastiani, Odette Laneuville

Published in: BMC Musculoskeletal Disorders | Issue 1/2015

Login to get access

Abstract

Background

Contractures of the knee joint cause disability and handicap. Recovering range of motion is recognized by arthritic patients as their preference for improved health outcome secondary only to pain management. Clinical and experimental studies provide evidence that the posterior knee capsule prevents the knee from achieving full extension. This study was undertaken to investigate the dynamic changes of the joint capsule transcriptome during the progression of knee joint contractures induced by immobilization. We performed a microarray analysis of genes expressed in the posterior knee joint capsule following induction of a flexion contracture by rigidly immobilizing the rat knee joint over a time-course of 16 weeks. Fold changes of expression values were measured and co-expressed genes were identified by clustering based on time-series analysis. Genes associated with immobilization were further analyzed to reveal pathways and biological significance and validated by immunohistochemistry on sagittal sections of knee joints.

Results

Changes in expression with a minimum of 1.5 fold changes were dominated by a decrease in expression for 7732 probe sets occurring at week 8 while the expression of 2251 probe sets increased. Clusters of genes with similar profiles of expression included a total of 162 genes displaying at least a 2 fold change compared to week 1. Functional analysis revealed ontology categories corresponding to triglyceride metabolism, extracellular matrix and muscle contraction. The altered expression of selected genes involved in the triglyceride biosynthesis pathway; AGPAT-9, and of the genes P4HB and HSP47, both involved in collagen synthesis, was confirmed by immunohistochemistry.

Conclusions

Gene expression in the knee joint capsule was sensitive to joint immobility and provided insights into molecular mechanisms relevant to the pathophysiology of knee flexion contractures. Capsule responses to immobilization was dynamic and characterized by modulation of at least three reaction pathways; down regulation of triglyceride biosynthesis, alteration of extracellular matrix degradation and muscle contraction gene expression. The posterior knee capsule may deploy tissue-specific patterns of mRNA regulatory responses to immobilization. The identification of altered expression of genes and biochemical pathways in the joint capsule provides potential targets for the therapy of knee flexion contractures.
Literature
1.
2.
go back to reference Chen MR, Dragoo JL. Arthroscopic releases for arthrofibrosis of the knee. J Am Acad Orthop Surg. 2011;19(11):709–16.CrossRefPubMed Chen MR, Dragoo JL. Arthroscopic releases for arthrofibrosis of the knee. J Am Acad Orthop Surg. 2011;19(11):709–16.CrossRefPubMed
3.
go back to reference Heiberg T, Kvien TK. Preferences for improved health examined in 1024 patients with rheumatoid arthritis: pain has highest priority. Arthritis Rheum. 2002;47:391–7.CrossRefPubMed Heiberg T, Kvien TK. Preferences for improved health examined in 1024 patients with rheumatoid arthritis: pain has highest priority. Arthritis Rheum. 2002;47:391–7.CrossRefPubMed
4.
go back to reference Kvien TK. Epidemiology and burden of illness of rheumatoid arthritis. Pharmacoeconomics. 2004;22 Suppl 1:1–12.PubMed Kvien TK. Epidemiology and burden of illness of rheumatoid arthritis. Pharmacoeconomics. 2004;22 Suppl 1:1–12.PubMed
5.
go back to reference Su EP. Fixed flexion deformity and total knee arthroplasty. J Bone Joint Surg (Br). 2012;94:112–5.CrossRef Su EP. Fixed flexion deformity and total knee arthroplasty. J Bone Joint Surg (Br). 2012;94:112–5.CrossRef
6.
go back to reference Ritter MA, Lutgring JD, Davis KE, Berend ME, Pierson JL, Meneghini RM. The role of flexion contracture on outcomes in primary total knee arthroplasty. J Arthroplasty. 2007;22:1092–6.CrossRefPubMed Ritter MA, Lutgring JD, Davis KE, Berend ME, Pierson JL, Meneghini RM. The role of flexion contracture on outcomes in primary total knee arthroplasty. J Arthroplasty. 2007;22:1092–6.CrossRefPubMed
7.
go back to reference Potter PJ, Kirby RL, MacLeod DA. The effects of simulated knee-flexion contractures on standing balance. Am J Phys Med Rehabil. 1990;69:144–7.CrossRefPubMed Potter PJ, Kirby RL, MacLeod DA. The effects of simulated knee-flexion contractures on standing balance. Am J Phys Med Rehabil. 1990;69:144–7.CrossRefPubMed
8.
go back to reference Aderinto J, Brenkel IJ, Chan P. Natural history of fixed flexion deformity following total knee replacement: a prospective five-year study. J Bone Joint Surg (Br). 2005;87:934–6.CrossRef Aderinto J, Brenkel IJ, Chan P. Natural history of fixed flexion deformity following total knee replacement: a prospective five-year study. J Bone Joint Surg (Br). 2005;87:934–6.CrossRef
9.
go back to reference Fehring TK, Odum SM. Surgical treatment of flexion contractures after total knee arthroplasty. J Arthroplasty. 2007;22:62–6.CrossRefPubMed Fehring TK, Odum SM. Surgical treatment of flexion contractures after total knee arthroplasty. J Arthroplasty. 2007;22:62–6.CrossRefPubMed
10.
go back to reference Clavet H, Hébert PC, Fergusson D, Doucette S, Trudel G. Joint contracture following prolonged stay in the intensive care unit. CMAJ. 2008;178:691–7.CrossRefPubMedPubMedCentral Clavet H, Hébert PC, Fergusson D, Doucette S, Trudel G. Joint contracture following prolonged stay in the intensive care unit. CMAJ. 2008;178:691–7.CrossRefPubMedPubMedCentral
11.
go back to reference Clavet H, Hébert PC, Fergusson DA, Doucette S, Trudel G. Joint contractures in the intensive care unit: association with resource utilization and ambulatory status at discharge. Disabil Rehabil. 2011;33:105–12.CrossRefPubMed Clavet H, Hébert PC, Fergusson DA, Doucette S, Trudel G. Joint contractures in the intensive care unit: association with resource utilization and ambulatory status at discharge. Disabil Rehabil. 2011;33:105–12.CrossRefPubMed
12.
go back to reference Trudel G, Uhthoff HK, Brown M. Extent and direction of joint motion limitation after prolonged immobility: an experimental study in the rat. Arch Phys Med Rehabil. 1999;80:1542–7.CrossRefPubMed Trudel G, Uhthoff HK, Brown M. Extent and direction of joint motion limitation after prolonged immobility: an experimental study in the rat. Arch Phys Med Rehabil. 1999;80:1542–7.CrossRefPubMed
13.
go back to reference Trudel G, Zhou J, Uhthoff HK, Laneuville O. Four weeks of mobility after 8 weeks of immobility fails to restore normal motion: a preliminary study. Clin Orthop Relat Res. 2008;466:1239–44.CrossRefPubMedPubMedCentral Trudel G, Zhou J, Uhthoff HK, Laneuville O. Four weeks of mobility after 8 weeks of immobility fails to restore normal motion: a preliminary study. Clin Orthop Relat Res. 2008;466:1239–44.CrossRefPubMedPubMedCentral
14.
go back to reference Trudel G, Uhthoff HK. Contractures secondary to immobility: is restriction articular or muscular? An experimental longitudinal study in the rat knee. Arch Phys Med Rehabil. 2000;81:6–13.CrossRefPubMed Trudel G, Uhthoff HK. Contractures secondary to immobility: is restriction articular or muscular? An experimental longitudinal study in the rat knee. Arch Phys Med Rehabil. 2000;81:6–13.CrossRefPubMed
15.
go back to reference Trudel G, Seki M, Uhthoff HK. Synovial adhesions are more important than pannus proliferation in the pathogenesis of knee joint contracture after immobilization: an experimental investigation in the rat. J Rheumatol. 2000;27:351–7.PubMed Trudel G, Seki M, Uhthoff HK. Synovial adhesions are more important than pannus proliferation in the pathogenesis of knee joint contracture after immobilization: an experimental investigation in the rat. J Rheumatol. 2000;27:351–7.PubMed
16.
go back to reference Gordon DA, Wetterau JR, Gregg RE. Microsomal triglyceride transfer protein: a protein complex required for the assembly of lipoprotein particles. Trends Cell Biol. 1995;5:317–21.CrossRefPubMed Gordon DA, Wetterau JR, Gregg RE. Microsomal triglyceride transfer protein: a protein complex required for the assembly of lipoprotein particles. Trends Cell Biol. 1995;5:317–21.CrossRefPubMed
17.
go back to reference Wilson R, Lees JF, Bulleid NJ. Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J Biol Chem. 1998;273:9637–43.CrossRefPubMed Wilson R, Lees JF, Bulleid NJ. Protein disulfide isomerase acts as a molecular chaperone during the assembly of procollagen. J Biol Chem. 1998;273:9637–43.CrossRefPubMed
18.
go back to reference Tasab M, Batten MR, Bulleid NJ. Hsp47: a molecular chaperone that interacts with and stabilizes correctly folded procollagen. EMBO J. 2002;19:2204–11.CrossRef Tasab M, Batten MR, Bulleid NJ. Hsp47: a molecular chaperone that interacts with and stabilizes correctly folded procollagen. EMBO J. 2002;19:2204–11.CrossRef
19.
go back to reference Matsumoto F, trudel G, Uhthoff HK. High collagen type I and low collagen type III levels in knee joint contractures. Acta Orthop Scand. 2002;73:335–43.CrossRefPubMed Matsumoto F, trudel G, Uhthoff HK. High collagen type I and low collagen type III levels in knee joint contractures. Acta Orthop Scand. 2002;73:335–43.CrossRefPubMed
20.
go back to reference Trudel G, Himori K, Goudreau L, Uhthoff HK. Measurement of articular cartilage surface irregularity in rat knee contracture. J Rheumatol. 2003;30:2218–25.PubMed Trudel G, Himori K, Goudreau L, Uhthoff HK. Measurement of articular cartilage surface irregularity in rat knee contracture. J Rheumatol. 2003;30:2218–25.PubMed
21.
go back to reference Trudel G, Himori K, Uhthoff HK. Contrasting alterations of apposed and unopposed articular cartilage during joint contracture formation. Arch Phys Med Rehabil. 2005;86:90–7.CrossRefPubMed Trudel G, Himori K, Uhthoff HK. Contrasting alterations of apposed and unopposed articular cartilage during joint contracture formation. Arch Phys Med Rehabil. 2005;86:90–7.CrossRefPubMed
22.
23.
go back to reference Haghighi A, Razzaghy-Azar M, Talea A, Sadeghian M, Ellard S, Haghighi A. Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1. Eur J Med Genet. 2012;55:620–4.CrossRefPubMedPubMedCentral Haghighi A, Razzaghy-Azar M, Talea A, Sadeghian M, Ellard S, Haghighi A. Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1. Eur J Med Genet. 2012;55:620–4.CrossRefPubMedPubMedCentral
24.
go back to reference Garg A. Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96:3313–25.CrossRefPubMed Garg A. Lipodystrophies: genetic and acquired body fat disorders. J Clin Endocrinol Metab. 2011;96:3313–25.CrossRefPubMed
25.
go back to reference Vigouroux C, Caron-Debarle M, Le Dour C, Magré J, Capeau J. Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol. 2011;43:862–76.CrossRefPubMed Vigouroux C, Caron-Debarle M, Le Dour C, Magré J, Capeau J. Molecular mechanisms of human lipodystrophies: from adipocyte lipid droplet to oxidative stress and lipotoxicity. Int J Biochem Cell Biol. 2011;43:862–76.CrossRefPubMed
26.
go back to reference Griffith AJ, Sprunger LK, Sirko-Osadsa DA, Tiller GE, Meisler MH, Warman ML. Marshall syndrome associated with a splicing defect at the COL11A1 locus. Am J Hum Genet. 1998;62:816–23.CrossRefPubMedPubMedCentral Griffith AJ, Sprunger LK, Sirko-Osadsa DA, Tiller GE, Meisler MH, Warman ML. Marshall syndrome associated with a splicing defect at the COL11A1 locus. Am J Hum Genet. 1998;62:816–23.CrossRefPubMedPubMedCentral
27.
go back to reference Annunen S, Körkkö J, Czarny M, Warman ML, Brunner HG, Kääriäinen H, et al. Splicing mutations of 54-bp exons in the COL11A1 gene cause Marshall syndrome, but other mutations cause overlapping Marshall/Stickler phenotypes. Am J Hum Genet. 1999;65:974–83.CrossRefPubMedPubMedCentral Annunen S, Körkkö J, Czarny M, Warman ML, Brunner HG, Kääriäinen H, et al. Splicing mutations of 54-bp exons in the COL11A1 gene cause Marshall syndrome, but other mutations cause overlapping Marshall/Stickler phenotypes. Am J Hum Genet. 1999;65:974–83.CrossRefPubMedPubMedCentral
28.
go back to reference Richards AJ, Baguley DM, Yates JR, Lane C, Nicol M, Harper PS, et al. Variation in the vitreous phenotype of Stickler syndrome can be caused by different amino acid substitutions in the X position of the type II collagen Gly-X-Y triple helix. Am J Hum Genet. 2000;67:1083–94.PubMedPubMedCentral Richards AJ, Baguley DM, Yates JR, Lane C, Nicol M, Harper PS, et al. Variation in the vitreous phenotype of Stickler syndrome can be caused by different amino acid substitutions in the X position of the type II collagen Gly-X-Y triple helix. Am J Hum Genet. 2000;67:1083–94.PubMedPubMedCentral
29.
go back to reference Parke DW. Stickler syndrome: clinical care and molecular genetics. Am J Ophthalmol. 2002;134:746–8.CrossRefPubMed Parke DW. Stickler syndrome: clinical care and molecular genetics. Am J Ophthalmol. 2002;134:746–8.CrossRefPubMed
30.
go back to reference Liberfarb RM, Levy HP, Rose PS, Wilkin DJ, Davis J, Balog JZ, et al. The Stickler syndrome: genotype/phenotype correlation in 10 families with Stickler syndrome resulting from seven mutations in the type II collagen gene locus COL2A1. Genet Med. 2003;5:21–7.CrossRefPubMed Liberfarb RM, Levy HP, Rose PS, Wilkin DJ, Davis J, Balog JZ, et al. The Stickler syndrome: genotype/phenotype correlation in 10 families with Stickler syndrome resulting from seven mutations in the type II collagen gene locus COL2A1. Genet Med. 2003;5:21–7.CrossRefPubMed
31.
go back to reference Woelfle JV, Brenner RE, Zabel B, Reichel H, Nelitz M. Schmid-type metaphyseal chondrodysplasia as the result of a collagen type X defect due to a novel COL10A1 nonsense mutation: A case report of a novel COL10A1 mutation. J Orthop Sci. 2011;16:245–9.CrossRefPubMed Woelfle JV, Brenner RE, Zabel B, Reichel H, Nelitz M. Schmid-type metaphyseal chondrodysplasia as the result of a collagen type X defect due to a novel COL10A1 nonsense mutation: A case report of a novel COL10A1 mutation. J Orthop Sci. 2011;16:245–9.CrossRefPubMed
32.
go back to reference Mansson B, Wenglén C, Mörgelin M, Saxne T, Heinegård D. Association of chondroadherin with collagen type II. J Biol Chem. 2001;276:32883–8.CrossRefPubMed Mansson B, Wenglén C, Mörgelin M, Saxne T, Heinegård D. Association of chondroadherin with collagen type II. J Biol Chem. 2001;276:32883–8.CrossRefPubMed
33.
go back to reference Haglund L, Tillgren V, Addis L, Wenglén C, Recklies A, Heinegård D. Identification and characterization of the integrin alpha2beta1 binding motif in chondroadherin mediating cell attachment. J Biol Chem. 2011;286:3925–34.CrossRefPubMed Haglund L, Tillgren V, Addis L, Wenglén C, Recklies A, Heinegård D. Identification and characterization of the integrin alpha2beta1 binding motif in chondroadherin mediating cell attachment. J Biol Chem. 2011;286:3925–34.CrossRefPubMed
34.
go back to reference Ahrens D, Koch AE, Pope RM, Stein-Picarella M, Niedbala MJ. Expression of matrix metalloproteinase 9 (96-kd gelatinase B) in human rheumatoid arthritis. Arthritis Rheum. 1996;39:1576–87.CrossRefPubMed Ahrens D, Koch AE, Pope RM, Stein-Picarella M, Niedbala MJ. Expression of matrix metalloproteinase 9 (96-kd gelatinase B) in human rheumatoid arthritis. Arthritis Rheum. 1996;39:1576–87.CrossRefPubMed
35.
go back to reference Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001;44:585–94.CrossRefPubMed Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001;44:585–94.CrossRefPubMed
36.
go back to reference Burleigh A, Chanalaris A, Gardiner MD, Driscoll C, Boruc O, Saklatvala J, et al. Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum. 2012;64:2278–88.CrossRefPubMed Burleigh A, Chanalaris A, Gardiner MD, Driscoll C, Boruc O, Saklatvala J, et al. Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum. 2012;64:2278–88.CrossRefPubMed
37.
go back to reference Kevorkian L, Young DA, Darrah C, Donell ST, Shepstone L, Porter S, et al. Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum. 2004;50:131–41.CrossRefPubMed Kevorkian L, Young DA, Darrah C, Donell ST, Shepstone L, Porter S, et al. Expression profiling of metalloproteinases and their inhibitors in cartilage. Arthritis Rheum. 2004;50:131–41.CrossRefPubMed
38.
go back to reference Appleton CT, Pitelka V, Henry J, Beier F. Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum. 2007;56:1854–68.CrossRefPubMed Appleton CT, Pitelka V, Henry J, Beier F. Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum. 2007;56:1854–68.CrossRefPubMed
39.
go back to reference Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001;44:585–94.CrossRefPubMed Tetlow LC, Adlam DJ, Woolley DE. Matrix metalloproteinase and proinflammatory cytokine production by chondrocytes of human osteoarthritic cartilage: associations with degenerative changes. Arthritis Rheum. 2001;44:585–94.CrossRefPubMed
40.
go back to reference Thiery JP, Engl W, Viasnoff V, Dufour S. Biochemical and biophysical origins of cadherin selectivity and adhesion strength. Curr Opin Cell Biol. 2012;24:614–9.CrossRefPubMed Thiery JP, Engl W, Viasnoff V, Dufour S. Biochemical and biophysical origins of cadherin selectivity and adhesion strength. Curr Opin Cell Biol. 2012;24:614–9.CrossRefPubMed
41.
go back to reference Vandooren B, Cantaert T, ter Borg M, Noordenbos T, Kuhlman R, Gerlag D, et al. Tumor necrosis factor alpha drives cadherin 11 expression in rheumatoid inflammation. Arthritis Rheum. 2008;58:3051–62.CrossRefPubMed Vandooren B, Cantaert T, ter Borg M, Noordenbos T, Kuhlman R, Gerlag D, et al. Tumor necrosis factor alpha drives cadherin 11 expression in rheumatoid inflammation. Arthritis Rheum. 2008;58:3051–62.CrossRefPubMed
42.
go back to reference Trudel G, Jabi M, Uhthoff HK. Localized and adaptive synoviocyte proliferation characteristics in rat knee joint contractures secondary to immobility. Arch Phys Med Rehabil. 2003;84:1350–6.CrossRefPubMed Trudel G, Jabi M, Uhthoff HK. Localized and adaptive synoviocyte proliferation characteristics in rat knee joint contractures secondary to immobility. Arch Phys Med Rehabil. 2003;84:1350–6.CrossRefPubMed
43.
go back to reference Ritter SY, Subbaiah R, Bebek G, Crish J, Scanzello CR, Krastins B, et al. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues. Arthritis Rheum. 2013;65(4):981–92.CrossRefPubMedPubMedCentral Ritter SY, Subbaiah R, Bebek G, Crish J, Scanzello CR, Krastins B, et al. Proteomic analysis of synovial fluid from the osteoarthritic knee: comparison with transcriptome analyses of joint tissues. Arthritis Rheum. 2013;65(4):981–92.CrossRefPubMedPubMedCentral
44.
go back to reference Campbell TM, Trudel G, Wong KK, Laneuville O. Genome wide gene expression analysis of the posterior capsule in patients with osteoarthritis and knee flexion contracture. J Rheumatol. 2014;41:2232–9.CrossRefPubMed Campbell TM, Trudel G, Wong KK, Laneuville O. Genome wide gene expression analysis of the posterior capsule in patients with osteoarthritis and knee flexion contracture. J Rheumatol. 2014;41:2232–9.CrossRefPubMed
45.
go back to reference Burleigh A, Chanalaris A, Gardiner MD, Driscoll C, Boruc O, Saklatvala J, et al. Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum. 2012;64(7):2278–88.CrossRefPubMed Burleigh A, Chanalaris A, Gardiner MD, Driscoll C, Boruc O, Saklatvala J, et al. Joint immobilization prevents murine osteoarthritis and reveals the highly mechanosensitive nature of protease expression in vivo. Arthritis Rheum. 2012;64(7):2278–88.CrossRefPubMed
46.
47.
go back to reference Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:P3.CrossRefPubMed Dennis Jr G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4:P3.CrossRefPubMed
48.
49.
go back to reference Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005;33:D428–32.CrossRefPubMed Joshi-Tope G, Gillespie M, Vastrik I, D'Eustachio P, Schmidt E, de Bono B, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005;33:D428–32.CrossRefPubMed
50.
go back to reference Trudel G, Jabi M, Uhthoff HK. Intraarticular tissue proliferation after immobility: methods of assessment and preliminary results in rat knee joints. J Rheumatol. 1998;25:945–50.PubMed Trudel G, Jabi M, Uhthoff HK. Intraarticular tissue proliferation after immobility: methods of assessment and preliminary results in rat knee joints. J Rheumatol. 1998;25:945–50.PubMed
Metadata
Title
Temporal gene expression profiling of the rat knee joint capsule during immobilization-induced joint contractures
Authors
Kayleigh Wong
Fangui Sun
Guy Trudel
Paola Sebastiani
Odette Laneuville
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2015
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-015-0588-0

Other articles of this Issue 1/2015

BMC Musculoskeletal Disorders 1/2015 Go to the issue