Skip to main content
Top
Published in: BMC Musculoskeletal Disorders 1/2015

Open Access 01-12-2015 | Research article

Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study

Authors: Fanny Buckinx, Jean-Yves Reginster, Nadia Dardenne, Jean-Louis Croisiser, Jean-François Kaux, Charlotte Beaudart, Justine Slomian, Olivier Bruyère

Published in: BMC Musculoskeletal Disorders | Issue 1/2015

Login to get access

Abstract

Background

Besides magnetic resonance imaging, dual energy X-ray absorptiometry (DXA) seems the most reliable tool to evaluate body composition and is often considered as the gold standard in clinical practice. Bioelectrical impedance analysis (BIA) could provide a simpler, portative, and less expensive alternative. Because the body composition assessment by BIA is device-dependent, the aim of this study was to appraise the concordance between the specific bioelectrical impedance device InBody S10 and DXA for the body composition evaluation.

Methods

Body composition, included appendicular lean mass divided by height squared (ALM/ht2) was measured by DXA (Hologic QDR Discovery device) and by BIA (InBody S10 Biospace device). Agreement between tools was assessed by means of the Bland Altman method and reliability was determined using the IntraClass Coefficient (ICC). ICC was also computed to assess the reliability of the test-retest performed by the same operator or by two different ones.

Results

A total of 219 subjects were enrolled in this study (mean age: 43.7 ± 19.1 years old, 51.6% of women). For the ALM/ht2, reliability of the test-retest of the BIA was high with an ICC of 0.89 (95%CI: 0.86-0.92) when performed by the same operator and an ICC of 0.77 (95%CI: 0.72-0.82) when performed by two different operators. Agreement between ALM/ht2 assessed by DXA and BIA was low (ICC = 0.37 (95%CI: 0.25-0.48)). Mean ALM/ht2 was 9.19 ± 1.39 kg/m2 with BIA and 7.34 ± 1.34 kg/m2 with DXA, (p < 0001). A formula developed using a multiple regression analysis, and taking into account muscle mass assessed by BIA, as well as sex and body mass index, explains 89% of the ALM/ht2 assessed by DXA.

Conclusions

Although our results show that the measure of ALM/ht2 by BIA is reliable, the agreement between DXA and BIA is low. Indeed, BIA seems to overestimate ALM/ht2 compared to DXA and, consequently, it is important to use an adapted formula to obtain measurement of the appendicular lean mass by BIA close to that measured by DXA.
Literature
1.
go back to reference Karelis AD, Chamberland G, Aubertin-Leheudre M, Duval C, Ecological mobility in Aging and Parkinson (EMAP) group. Validation of a portable bioelectrical impedance analyzer for the assessment of body composition. Appl Physiol Nutr Metab. 2013;38(1):27–32.CrossRefPubMed Karelis AD, Chamberland G, Aubertin-Leheudre M, Duval C, Ecological mobility in Aging and Parkinson (EMAP) group. Validation of a portable bioelectrical impedance analyzer for the assessment of body composition. Appl Physiol Nutr Metab. 2013;38(1):27–32.CrossRefPubMed
2.
go back to reference Stenver DI, Gotfredsen A, Hilsted J, Nielsen B. Body composition in hemodialysis patients measured by dual-energy X-ray absorptiometry. Am J Nephrol. 1995;15(2):105–10.CrossRefPubMed Stenver DI, Gotfredsen A, Hilsted J, Nielsen B. Body composition in hemodialysis patients measured by dual-energy X-ray absorptiometry. Am J Nephrol. 1995;15(2):105–10.CrossRefPubMed
3.
go back to reference Pateyjohns IR, Brinkworth GD, Buckley JD, Noakes M, Clifton PM. Comparison of three bioelectrical impedance methods with DXA in overweight and obese men. Obesity (Silver Spring). 2006;14(11):2064–70.CrossRef Pateyjohns IR, Brinkworth GD, Buckley JD, Noakes M, Clifton PM. Comparison of three bioelectrical impedance methods with DXA in overweight and obese men. Obesity (Silver Spring). 2006;14(11):2064–70.CrossRef
4.
go back to reference Fowke JH, Matthews CE. PSA and body composition by Dual X-ray Absorptiometry (DXA) in NHANES. Prostate. 2010;70(2):120–5.PubMedPubMedCentral Fowke JH, Matthews CE. PSA and body composition by Dual X-ray Absorptiometry (DXA) in NHANES. Prostate. 2010;70(2):120–5.PubMedPubMedCentral
5.
go back to reference Thibault R, Pichard C. The evaluation of body composition: a useful tool for clinical practice. Ann Nutr Metab. 2012;60(1):6–16.CrossRefPubMed Thibault R, Pichard C. The evaluation of body composition: a useful tool for clinical practice. Ann Nutr Metab. 2012;60(1):6–16.CrossRefPubMed
6.
go back to reference Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J. The official positions of the international society for clinical densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom. 2013;16(4):520–36.CrossRefPubMed Hangartner TN, Warner S, Braillon P, Jankowski L, Shepherd J. The official positions of the international society for clinical densitometry: acquisition of dual-energy X-ray absorptiometry body composition and considerations regarding analysis and repeatability of measures. J Clin Densitom. 2013;16(4):520–36.CrossRefPubMed
7.
go back to reference Salamat MR, Shanei A, Khoshhali M, Salamat AH, Siavash M, Asgari M. Use of conventional regional DXA scans for estimating whole body composition. Arch Iran Med. 2014;17(10):674–8.PubMed Salamat MR, Shanei A, Khoshhali M, Salamat AH, Siavash M, Asgari M. Use of conventional regional DXA scans for estimating whole body composition. Arch Iran Med. 2014;17(10):674–8.PubMed
8.
go back to reference Visser M, Fuerst T, Lang T, Salamone L, Harris TB. Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health, aging, and body composition study--dual-energy x-ray absorptiometry and body composition working group. J Appl Physiol (1985). 1999;87(4):1513–20. Visser M, Fuerst T, Lang T, Salamone L, Harris TB. Validity of fan-beam dual-energy X-ray absorptiometry for measuring fat-free mass and leg muscle mass. Health, aging, and body composition study--dual-energy x-ray absorptiometry and body composition working group. J Appl Physiol (1985). 1999;87(4):1513–20.
9.
go back to reference Haapala I, Hirvonen A, Niskanen L, Uusitupa M, Kröger H, Alhava E, et al. Anthropometry, bioelectrical impedance and dual-energy X-ray absorptiometry in the assessment of body composition in elderly Finnish women. Clin Physiol Funct Imaging. 2002;22(6):383–91.CrossRefPubMed Haapala I, Hirvonen A, Niskanen L, Uusitupa M, Kröger H, Alhava E, et al. Anthropometry, bioelectrical impedance and dual-energy X-ray absorptiometry in the assessment of body composition in elderly Finnish women. Clin Physiol Funct Imaging. 2002;22(6):383–91.CrossRefPubMed
10.
go back to reference Nichols J, Loftin M, Stewart D, Lohman T, Tuuri G, Ring K, et al. Validation of bioelectrical impedance analysis (BIA) for estimation of body composition in Black , White and Hispanic adolescent girls. Int J Body Compos Res. 2006;4(4):161–7.PubMedPubMedCentral Nichols J, Loftin M, Stewart D, Lohman T, Tuuri G, Ring K, et al. Validation of bioelectrical impedance analysis (BIA) for estimation of body composition in Black , White and Hispanic adolescent girls. Int J Body Compos Res. 2006;4(4):161–7.PubMedPubMedCentral
11.
go back to reference Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older Peopl. Age Ageing. 2010;39(4):412–23.CrossRefPubMedPubMedCentral Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older Peopl. Age Ageing. 2010;39(4):412–23.CrossRefPubMedPubMedCentral
12.
go back to reference Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR. Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham study. J Gerontol A Biol Sci Med Sci. 2013;68(2):168–74.CrossRefPubMed Dufour AB, Hannan MT, Murabito JM, Kiel DP, McLean RR. Sarcopenia definitions considering body size and fat mass are associated with mobility limitations: the Framingham study. J Gerontol A Biol Sci Med Sci. 2013;68(2):168–74.CrossRefPubMed
13.
go back to reference Tataranni PA, Ravussin E. Use of dual-energy X-ray absorptiometry in obese individuals. Am J Clin Nutr. 1995;62(4):730–4.PubMed Tataranni PA, Ravussin E. Use of dual-energy X-ray absorptiometry in obese individuals. Am J Clin Nutr. 1995;62(4):730–4.PubMed
14.
go back to reference Savva C, Giakas G, Efstathiou M, Karagiannis C. Test-retest reliability of handgrip strength measurement using a hydraulic hand dynamometer in patients with cervical radiculopathy. J Manipulative Physiol Ther. 2014;37(3):206–10.CrossRefPubMed Savva C, Giakas G, Efstathiou M, Karagiannis C. Test-retest reliability of handgrip strength measurement using a hydraulic hand dynamometer in patients with cervical radiculopathy. J Manipulative Physiol Ther. 2014;37(3):206–10.CrossRefPubMed
15.
go back to reference Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423–9.CrossRefPubMed Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C, et al. A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing. 2011;40(4):423–9.CrossRefPubMed
16.
go back to reference Watanabe T, Owashi K, Kanauchi Y, Mura N, Takahara M, Ogino T. The short-term reliability of grip strength measurement and the effects of posture and grip span. J Hand Surg Am. 2005;30(3):603–9.CrossRefPubMed Watanabe T, Owashi K, Kanauchi Y, Mura N, Takahara M, Ogino T. The short-term reliability of grip strength measurement and the effects of posture and grip span. J Hand Surg Am. 2005;30(3):603–9.CrossRefPubMed
17.
go back to reference Park MY, Kim SH, Cho YJ, Chung RH, Lee KT. Association of leisure time physical activity and metabolic syndrome over 40 years. Korean J Fam Med. 2014;35(2):65–73.CrossRefPubMedPubMedCentral Park MY, Kim SH, Cho YJ, Chung RH, Lee KT. Association of leisure time physical activity and metabolic syndrome over 40 years. Korean J Fam Med. 2014;35(2):65–73.CrossRefPubMedPubMedCentral
18.
go back to reference Taylor HL, Jacobs Jr DR, Schucker B, Knudsen J, Leon AS, Debacker G. A questionnaire for the assessment of leisure time physical activities. J Chronic Dis. 1978;31(12):741–55.CrossRefPubMed Taylor HL, Jacobs Jr DR, Schucker B, Knudsen J, Leon AS, Debacker G. A questionnaire for the assessment of leisure time physical activities. J Chronic Dis. 1978;31(12):741–55.CrossRefPubMed
19.
go back to reference Bosquet L, Maquet D, Forthomme B, Nowak N, Lehance C, Croisier JL. Effect of the lengthening of the protocol on the reliability of muscle fatigue indicators. Int J Sports Med. 2010;31(2):82–8.CrossRefPubMed Bosquet L, Maquet D, Forthomme B, Nowak N, Lehance C, Croisier JL. Effect of the lengthening of the protocol on the reliability of muscle fatigue indicators. Int J Sports Med. 2010;31(2):82–8.CrossRefPubMed
20.
go back to reference Jackson AS, Pollock ML, Graves JE, Mahar MT. Reliability and validity of bioelectrical impedance in determining body composition. J Appl Physiol (1985). 1988;64(2):529–34. Jackson AS, Pollock ML, Graves JE, Mahar MT. Reliability and validity of bioelectrical impedance in determining body composition. J Appl Physiol (1985). 1988;64(2):529–34.
21.
go back to reference Kjellin L, Sjodahl RC, Eklund M. Activity-based assessment (BIA)–inter-rater reliability and staff experiences. Scand J Occup Ther. 2008;15(2):75–81.CrossRefPubMed Kjellin L, Sjodahl RC, Eklund M. Activity-based assessment (BIA)–inter-rater reliability and staff experiences. Scand J Occup Ther. 2008;15(2):75–81.CrossRefPubMed
22.
go back to reference King S, Wilson J, Kotsimbos T, Bailey M, Nyulasi I. Body composition assessment in adults with cystic fibrosis: comparison of dual-energy X-ray absorptiometry with skinfolds and bioelectrical impedance analysis. Nutrition. 2005;21(11–12):1087–94.CrossRefPubMed King S, Wilson J, Kotsimbos T, Bailey M, Nyulasi I. Body composition assessment in adults with cystic fibrosis: comparison of dual-energy X-ray absorptiometry with skinfolds and bioelectrical impedance analysis. Nutrition. 2005;21(11–12):1087–94.CrossRefPubMed
23.
go back to reference Ziai S, Coriati A, Chabot K, Mailhot M, Richter MV, Rabasa-Lhoret R. Agreement of bioelectric impedance analysis and dual-energy X-ray absorptiometry for body composition evaluation in adults with cystic fibrosis. J Cyst Fibros. 2014;13(5):585–8.CrossRefPubMed Ziai S, Coriati A, Chabot K, Mailhot M, Richter MV, Rabasa-Lhoret R. Agreement of bioelectric impedance analysis and dual-energy X-ray absorptiometry for body composition evaluation in adults with cystic fibrosis. J Cyst Fibros. 2014;13(5):585–8.CrossRefPubMed
24.
go back to reference Savastano S, Belfiore A, Di Somma C, Mauriello C, Rossi A, Pizza G, et al. Validity of bioelectrical impedance analysis to estimate body composition changes after bariatric surgery in premenopausal morbidly women. Obes Surg. 2010;20(3):332–9.CrossRefPubMed Savastano S, Belfiore A, Di Somma C, Mauriello C, Rossi A, Pizza G, et al. Validity of bioelectrical impedance analysis to estimate body composition changes after bariatric surgery in premenopausal morbidly women. Obes Surg. 2010;20(3):332–9.CrossRefPubMed
25.
go back to reference Kim M, Kim H. Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. Eur J Clin Nutr. 2013;67(4):395–400.CrossRefPubMed Kim M, Kim H. Accuracy of segmental multi-frequency bioelectrical impedance analysis for assessing whole-body and appendicular fat mass and lean soft tissue mass in frail women aged 75 years and older. Eur J Clin Nutr. 2013;67(4):395–400.CrossRefPubMed
26.
go back to reference Lloret Linares C, Ciangura C, Bouillot JL, Coupaye M, Declèves X, Poitou C, et al. Validity of leg-to-leg bioelectrical impedance analysis to estimate body fat in obesity. Obes Surg. 2011;21(7):917–23.CrossRefPubMed Lloret Linares C, Ciangura C, Bouillot JL, Coupaye M, Declèves X, Poitou C, et al. Validity of leg-to-leg bioelectrical impedance analysis to estimate body fat in obesity. Obes Surg. 2011;21(7):917–23.CrossRefPubMed
27.
go back to reference Kim JH, Choi SH, Lim S, Kim KW, Lim JY, Cho NH, et al. Assessment of appendicular skeletal muscle mass by bioimpedance in older community-dwelling Korean adults. Arch Gerontol Geriatr. 2014;58(3):303–7.CrossRefPubMed Kim JH, Choi SH, Lim S, Kim KW, Lim JY, Cho NH, et al. Assessment of appendicular skeletal muscle mass by bioimpedance in older community-dwelling Korean adults. Arch Gerontol Geriatr. 2014;58(3):303–7.CrossRefPubMed
Metadata
Title
Concordance between muscle mass assessed by bioelectrical impedance analysis and by dual energy X-ray absorptiometry: a cross-sectional study
Authors
Fanny Buckinx
Jean-Yves Reginster
Nadia Dardenne
Jean-Louis Croisiser
Jean-François Kaux
Charlotte Beaudart
Justine Slomian
Olivier Bruyère
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Musculoskeletal Disorders / Issue 1/2015
Electronic ISSN: 1471-2474
DOI
https://doi.org/10.1186/s12891-015-0510-9

Other articles of this Issue 1/2015

BMC Musculoskeletal Disorders 1/2015 Go to the issue