Skip to main content
Top
Published in: BMC Public Health 1/2021

Open Access 01-12-2021 | SARS-CoV-2 | Research article

Occupancy modeling and resampling overcomes low test sensitivity to produce accurate SARS-CoV-2 prevalence estimates

Authors: Jamie S. Sanderlin, Jessie D. Golding, Taylor Wilcox, Daniel H. Mason, Kevin S. McKelvey, Dean E. Pearson, Michael K. Schwartz

Published in: BMC Public Health | Issue 1/2021

Login to get access

Abstract

Background

We evaluated whether occupancy modeling, an approach developed for detecting rare wildlife species, could overcome inherent accuracy limitations associated with rapid disease tests to generate fast, accurate, and affordable SARS-CoV-2 prevalence estimates. Occupancy modeling uses repeated sampling to estimate probability of false negative results, like those linked to rapid tests, for generating unbiased prevalence estimates.

Methods

We developed a simulation study to estimate SARS-CoV-2 prevalence using rapid, low-sensitivity, low-cost tests and slower, high-sensitivity, higher cost tests across a range of disease prevalence and sampling strategies.

Results

Occupancy modeling overcame the low sensitivity of rapid tests to generate prevalence estimates comparable to more accurate, slower tests. Moreover, minimal repeated sampling was required to offset low test sensitivity at low disease prevalence (0.1%), when rapid testing is most critical for informing disease management.

Conclusions

Occupancy modeling enables the use of rapid tests to provide accurate, affordable, real-time estimates of the prevalence of emerging infectious diseases like SARS-CoV-2.
Appendix
Available only for authorised users
Literature
2.
go back to reference Mina MJ, Parker R, Larremore DB. Rethinking Covid-19 test sensitivity - a strategy for containment. N Engl J Med [Internet]. 2020;1–2. Available from: nejm.org Mina MJ, Parker R, Larremore DB. Rethinking Covid-19 test sensitivity - a strategy for containment. N Engl J Med [Internet]. 2020;1–2. Available from: nejm.​org
4.
go back to reference Wu SL, Mertens AN, Crider YS, Nguyen A, Pokpongkiat NN, Djajadi S, et al. Substantial underestimation of SARS-CoV-2 infection in the United States. Nat Commun. 2020;11(1). Wu SL, Mertens AN, Crider YS, Nguyen A, Pokpongkiat NN, Djajadi S, et al. Substantial underestimation of SARS-CoV-2 infection in the United States. Nat Commun. 2020;11(1).
5.
go back to reference Woloshin S, Patel N, Kesselheim AS. False negative tests for SARS-CoV-2 infection - challenges and implications. N Engl J Med [Internet]. 2020;38(1):1–2. Available from: nejm.org Woloshin S, Patel N, Kesselheim AS. False negative tests for SARS-CoV-2 infection - challenges and implications. N Engl J Med [Internet]. 2020;38(1):1–2. Available from: nejm.​org
8.
go back to reference Dao Thi VL, Herbst K, Boerner K, Meurer M, Kremer LPM, Kirrmaier D, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020;12(eabc7075). Dao Thi VL, Herbst K, Boerner K, Meurer M, Kremer LPM, Kirrmaier D, et al. A colorimetric RT-LAMP assay and LAMP-sequencing for detecting SARS-CoV-2 RNA in clinical samples. Sci Transl Med. 2020;12(eabc7075).
11.
go back to reference Vogels CBF, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, Petrone ME, Casanovas-Massana A, Catherine Muenker M, Moore AJ, Klein J, Lu P, Lu-Culligan A, Jiang X, Kim DJ, Kudo E, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Tokuyama M, Venkataraman A, Weizman OE, Wong P, Yang Y, Cheemarla NR, White EB, Lapidus S, Earnest R, Geng B, Vijayakumar P, Odio C, Fournier J, Bermejo S, Farhadian S, dela Cruz CS, Iwasaki A, Ko AI, Landry ML, Foxman EF, Grubaugh ND. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nat Microbiol. 2020;5(10):1299–305. https://doi.org/10.1038/s41564-020-0761-6.CrossRefPubMed Vogels CBF, Brito AF, Wyllie AL, Fauver JR, Ott IM, Kalinich CC, Petrone ME, Casanovas-Massana A, Catherine Muenker M, Moore AJ, Klein J, Lu P, Lu-Culligan A, Jiang X, Kim DJ, Kudo E, Mao T, Moriyama M, Oh JE, Park A, Silva J, Song E, Takahashi T, Taura M, Tokuyama M, Venkataraman A, Weizman OE, Wong P, Yang Y, Cheemarla NR, White EB, Lapidus S, Earnest R, Geng B, Vijayakumar P, Odio C, Fournier J, Bermejo S, Farhadian S, dela Cruz CS, Iwasaki A, Ko AI, Landry ML, Foxman EF, Grubaugh ND. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nat Microbiol. 2020;5(10):1299–305. https://​doi.​org/​10.​1038/​s41564-020-0761-6.CrossRefPubMed
13.
go back to reference Williams BK, Nichols JD, Conroy MJ. Analysis and management of animal populations - modeling, estimation, and decision making. San Diego, California: Academic Press; 2002. 817 p. Williams BK, Nichols JD, Conroy MJ. Analysis and management of animal populations - modeling, estimation, and decision making. San Diego, California: Academic Press; 2002. 817 p.
16.
go back to reference Mackenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE. Occupancy estimation and modeling. New York, New York: Academic Press; 2006. Mackenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LL, Hines JE. Occupancy estimation and modeling. New York, New York: Academic Press; 2006.
21.
go back to reference Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. 2nd ed. New York: Chapman and Hall/CRC; 2004. Gelman A, Carlin JB, Stern HS, Rubin DB. Bayesian data analysis. 2nd ed. New York: Chapman and Hall/CRC; 2004.
22.
23.
go back to reference Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proc 3rd Int Work Distrib Stat Comput (DSC 2003). 2003;20–22. Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proc 3rd Int Work Distrib Stat Comput (DSC 2003). 2003;20–22.
26.
go back to reference Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations general methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7(4):434–55. Brooks SP, Gelman A. General methods for monitoring convergence of iterative simulations general methods for monitoring convergence of iterative simulations. J Comput Graph Stat. 1998;7(4):434–55.
27.
go back to reference Taha HA. Operations research: an introduction. 9th ed. Prentice Hall: New Jersey, USA; 2011. 14 p. Taha HA. Operations research: an introduction. 9th ed. Prentice Hall: New Jersey, USA; 2011. 14 p.
31.
go back to reference Ruiz-Gutierrez V, Hooten MB, Campbell Grant EH, Ruiz-Gutiérrez V, Hooten MB, Campbell Grant EH. Uncertainty in biological monitoring: a framework for data collection and analysis to account for multiple sources of sampling bias. Methods Ecol Evol. 2016;7(8):900–9. https://doi.org/10.1111/2041-210X.12542.CrossRef Ruiz-Gutierrez V, Hooten MB, Campbell Grant EH, Ruiz-Gutiérrez V, Hooten MB, Campbell Grant EH. Uncertainty in biological monitoring: a framework for data collection and analysis to account for multiple sources of sampling bias. Methods Ecol Evol. 2016;7(8):900–9. https://​doi.​org/​10.​1111/​2041-210X.​12542.CrossRef
Metadata
Title
Occupancy modeling and resampling overcomes low test sensitivity to produce accurate SARS-CoV-2 prevalence estimates
Authors
Jamie S. Sanderlin
Jessie D. Golding
Taylor Wilcox
Daniel H. Mason
Kevin S. McKelvey
Dean E. Pearson
Michael K. Schwartz
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
SARS-CoV-2
Published in
BMC Public Health / Issue 1/2021
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-021-10609-y

Other articles of this Issue 1/2021

BMC Public Health 1/2021 Go to the issue