Skip to main content
Top
Published in: BMC Public Health 1/2021

01-12-2021 | Obesity | Study protocol

Annual rhythms in adults’ lifestyle and health (ARIA): protocol for a 12-month longitudinal study examining temporal patterns in weight, activity, diet, and wellbeing in Australian adults

Authors: Rachel G. Curtis, Timothy Olds, François Fraysse, Dorothea Dumuid, Gilly A. Hendrie, Adrian Esterman, Wendy J. Brown, Ty Ferguson, Rajini Lagiseti, Carol A. Maher

Published in: BMC Public Health | Issue 1/2021

Login to get access

Abstract

Background

Almost one in three Australian adults are now obese, and the rate continues to rise. The causes of obesity are multifaceted and include environmental, cultural and lifestyle factors. Emerging evidence suggests there may be temporal patterns in weight gain related, for example, to season and major festivals such as Christmas, potentially due to changes in diet, daily activity patterns or both. The aim of this study is to track the annual rhythm in body weight, 24 h activity patterns, dietary patterns, and wellbeing in a cohort of Australian adults. In addition, through data linkage with a concurrent children’s cohort study, we aim to examine whether changes in children’s body mass index, activity and diet are related to those of their parents.

Methods

A community-based sample of 375 parents aged 18 to 65 years old, residing in or near Adelaide, Australia, and who have access to a Bluetooth-enabled mobile device or a computer and home internet, will be recruited. Across a full year, daily activities (minutes of moderate to vigorous physical activity, light physical activity, sedentary behaviour and sleep) will be measured using wrist-worn accelerometry (Fitbit Charge 3). Body weight will be measured daily using Fitbit wifi scales. Self-reported dietary intake (Dietary Questionnaire for Epidemiological Studies V3.2), and psychological wellbeing (WHOQOL-BREF and DASS-21) will be assessed eight times throughout the 12-month period. Annual patterns in weight will be examined using Lowess curves. Associations between changes in weight and changes in activity and diet compositions will be examined using repeated measures multi-level models. The associations between parent’s and children’s weight, activity and diet will be investigated using multi-level models.

Discussion

Temporal factors, such as day type (weekday or weekend day), cultural celebrations and season, may play a key role in weight gain. The aim is to identify critical opportunities for intervention to assist the prevention of weight gain. Family-based interventions may be an important intervention strategy.

Trial registration

Australia New Zealand Clinical Trials Registry, identifier ACTRN12619001430​123. Prospectively registered on 16 October 2019.
Literature
3.
go back to reference Weiderpass E, Persson I, Adami H-O, Magnusson C, Lindgren A, Baron JA. Body size in different periods of life, diabetes mellitus, hypertension, and risk of postmenopausal endometrial cancer. Cancer Causes Control. 2000;11(2):185–92.PubMedCrossRef Weiderpass E, Persson I, Adami H-O, Magnusson C, Lindgren A, Baron JA. Body size in different periods of life, diabetes mellitus, hypertension, and risk of postmenopausal endometrial cancer. Cancer Causes Control. 2000;11(2):185–92.PubMedCrossRef
4.
go back to reference Emerging Risk Factors Collaboration. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085–95.CrossRef Emerging Risk Factors Collaboration. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet. 2011;377(9771):1085–95.CrossRef
5.
go back to reference Anandacoomarasamy A, Caterson I, Sambrook P, Fransen M, March LJ. The impact of obesity on the musculoskeletal system. Curr Opin Rheumatol. 2008;32(2):211–22. Anandacoomarasamy A, Caterson I, Sambrook P, Fransen M, March LJ. The impact of obesity on the musculoskeletal system. Curr Opin Rheumatol. 2008;32(2):211–22.
7.
go back to reference Maher CA, Mire E, Harrington DM, Staiano AE, Katzmarzyk PT. The independent and combined associations of physical activity and sedentary behavior with obesity in adults: NHANES 2003-06. Obesity. 2013;21(12):e730–7.PubMedCrossRef Maher CA, Mire E, Harrington DM, Staiano AE, Katzmarzyk PT. The independent and combined associations of physical activity and sedentary behavior with obesity in adults: NHANES 2003-06. Obesity. 2013;21(12):e730–7.PubMedCrossRef
8.
go back to reference Cappuccio FP, Taggart FM, Kandala N-B, Currie A, Peile E, Stranges S, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–26.PubMedPubMedCentralCrossRef Cappuccio FP, Taggart FM, Kandala N-B, Currie A, Peile E, Stranges S, et al. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–26.PubMedPubMedCentralCrossRef
10.
11.
go back to reference Tanamas SK, Shaw JE, Backholer K, Magliano DJ, Peeters A. Twelve-year weight change, waist circumference change and incident obesity: the Australian diabetes, obesity and lifestyle study. Obesity. 2014;22(6):1538–45.PubMedCrossRef Tanamas SK, Shaw JE, Backholer K, Magliano DJ, Peeters A. Twelve-year weight change, waist circumference change and incident obesity: the Australian diabetes, obesity and lifestyle study. Obesity. 2014;22(6):1538–45.PubMedCrossRef
12.
go back to reference Brown WJ, Williams L, Ford JH, Ball K, Dobson AJ. Identifying the energy gap: magnitude and determinants of 5-year weight gain in midage women. Obes Res. 2005;13(8):1431–41.PubMedCrossRef Brown WJ, Williams L, Ford JH, Ball K, Dobson AJ. Identifying the energy gap: magnitude and determinants of 5-year weight gain in midage women. Obes Res. 2005;13(8):1431–41.PubMedCrossRef
13.
go back to reference Haines PS, Hama MY, Guilkey DK, Popkin BM. Weekend eating in the United States is linked with greater energy, fat, and alcohol intake. Obes Res. 2003;11(8):945–9.PubMedCrossRef Haines PS, Hama MY, Guilkey DK, Popkin BM. Weekend eating in the United States is linked with greater energy, fat, and alcohol intake. Obes Res. 2003;11(8):945–9.PubMedCrossRef
14.
go back to reference Tudor-Locke C, Ham SA, Macera CA, Ainsworth BE, Kirtland KA, Reis JP, et al. Descriptive epidemiology of pedometer-determined physical activity. Med Sci Sports Exerc. 2004;36(9):1567–73.PubMedCrossRef Tudor-Locke C, Ham SA, Macera CA, Ainsworth BE, Kirtland KA, Reis JP, et al. Descriptive epidemiology of pedometer-determined physical activity. Med Sci Sports Exerc. 2004;36(9):1567–73.PubMedCrossRef
15.
go back to reference Miller R, Brown W. Steps and sitting in a working population. Int J Behav Med. 2004;11(4):219–24.PubMedCrossRef Miller R, Brown W. Steps and sitting in a working population. Int J Behav Med. 2004;11(4):219–24.PubMedCrossRef
16.
go back to reference Im H-J, Baek S-H, Chu MK, Yang KI, Kim W-J, Park S-H, et al. Association between weekend catch-up sleep and lower body mass: population-based study. Sleep. 2017;40(7):zsx089.CrossRef Im H-J, Baek S-H, Chu MK, Yang KI, Kim W-J, Park S-H, et al. Association between weekend catch-up sleep and lower body mass: population-based study. Sleep. 2017;40(7):zsx089.CrossRef
17.
go back to reference Roepke SE, Duffy JF. Differential impact of chronotype on weekday and weekend sleep timing and duration. Nat Sci Sleep. 2010;2010(2):213–20.PubMed Roepke SE, Duffy JF. Differential impact of chronotype on weekday and weekend sleep timing and duration. Nat Sci Sleep. 2010;2010(2):213–20.PubMed
18.
go back to reference Díaz-Zavala RG, Castro-Cantú MF, Valencia ME, Álvarez-Hernández G, Haby MM, Esparza-Romero J. Effect of the holiday season on weight gain: a narrative review. J Obes. 2017;2017:2085136.PubMedPubMedCentralCrossRef Díaz-Zavala RG, Castro-Cantú MF, Valencia ME, Álvarez-Hernández G, Haby MM, Esparza-Romero J. Effect of the holiday season on weight gain: a narrative review. J Obes. 2017;2017:2085136.PubMedPubMedCentralCrossRef
19.
20.
go back to reference Helander EE, Wansink B, Chieh A. Weight gain over the holidays in three countries. N Engl J Med. 2016;375(12):1200–2.PubMedCrossRef Helander EE, Wansink B, Chieh A. Weight gain over the holidays in three countries. N Engl J Med. 2016;375(12):1200–2.PubMedCrossRef
21.
go back to reference Visscher TL, Seidell JC. Time trends (1993-1997) and seasonal variation in body mass index and waist circumference in the Netherlands. Int J Obes Relat Metab Disord. 2004;28(10):1309–16.PubMedCrossRef Visscher TL, Seidell JC. Time trends (1993-1997) and seasonal variation in body mass index and waist circumference in the Netherlands. Int J Obes Relat Metab Disord. 2004;28(10):1309–16.PubMedCrossRef
22.
go back to reference Shahar DR, Froom P, Harari G, Yerushalmi N, Lubin F, Kristal-Boneh E. Changes in dietary intake account for seasonal changes in cardiovascular disease risk factors. Eur J Clin Nutr. 1999;53(5):395–400.PubMedCrossRef Shahar DR, Froom P, Harari G, Yerushalmi N, Lubin F, Kristal-Boneh E. Changes in dietary intake account for seasonal changes in cardiovascular disease risk factors. Eur J Clin Nutr. 1999;53(5):395–400.PubMedCrossRef
23.
go back to reference Adamsson M, Laike T, Morita T. Seasonal variation in bright daylight exposure, mood and behavior among a group of office workers in Sweden. J Circadian Rhythms. 2018;16:2.PubMedPubMedCentralCrossRef Adamsson M, Laike T, Morita T. Seasonal variation in bright daylight exposure, mood and behavior among a group of office workers in Sweden. J Circadian Rhythms. 2018;16:2.PubMedPubMedCentralCrossRef
24.
go back to reference Suzuki M, Taniguchi T, Furihata R, Yoshita K, Arai Y, Yoshiike N, et al. Seasonal changes in sleep duration and sleep problems: a prospective study in Japanese community residents. PLoS One. 2019;14(4):e0215345.PubMedPubMedCentralCrossRef Suzuki M, Taniguchi T, Furihata R, Yoshita K, Arai Y, Yoshiike N, et al. Seasonal changes in sleep duration and sleep problems: a prospective study in Japanese community residents. PLoS One. 2019;14(4):e0215345.PubMedPubMedCentralCrossRef
25.
go back to reference Friborg O, Bjorvatn B, Amponsah B, Pallesen S. Associations between seasonal variations in day length (photoperiod), sleep timing, sleep quality and mood: a comparison between Ghana (5°) and Norway (69°). J Sleep Res. 2012;21(2):176–84.PubMedCrossRef Friborg O, Bjorvatn B, Amponsah B, Pallesen S. Associations between seasonal variations in day length (photoperiod), sleep timing, sleep quality and mood: a comparison between Ghana (5°) and Norway (69°). J Sleep Res. 2012;21(2):176–84.PubMedCrossRef
26.
go back to reference O’Connell SE, Griffiths PL, Clemes SA. Seasonal variation in physical activity, sedentary behaviour and sleep in a sample of UK adults. Ann Hum Biol. 2014;41(1):1–8.PubMedCrossRef O’Connell SE, Griffiths PL, Clemes SA. Seasonal variation in physical activity, sedentary behaviour and sleep in a sample of UK adults. Ann Hum Biol. 2014;41(1):1–8.PubMedCrossRef
27.
go back to reference Hamilton SL, Clemes SA, Griffiths PL. UK adults exhibit higher step counts in summer compared to winter months. Ann Hum Biol. 2008;35(2):154–69.PubMedCrossRef Hamilton SL, Clemes SA, Griffiths PL. UK adults exhibit higher step counts in summer compared to winter months. Ann Hum Biol. 2008;35(2):154–69.PubMedCrossRef
28.
go back to reference Matthews CE, Freedson PS, Hebert JR, Stanek EJ III, Merriam PA, Rosal MC, et al. Seasonal variation in household, occupational, and leisure time physical activity: longitudinal analyses from the seasonal variation of blood cholesterol study. Am J Epidemiol. 2001;153(2):172–83.PubMedCrossRef Matthews CE, Freedson PS, Hebert JR, Stanek EJ III, Merriam PA, Rosal MC, et al. Seasonal variation in household, occupational, and leisure time physical activity: longitudinal analyses from the seasonal variation of blood cholesterol study. Am J Epidemiol. 2001;153(2):172–83.PubMedCrossRef
29.
go back to reference Plasqui G, Westerterp KR. Seasonal variation in total energy expenditure and physical activity in Dutch young adults. Obes Res. 2004;12(4):688–94.CrossRefPubMed Plasqui G, Westerterp KR. Seasonal variation in total energy expenditure and physical activity in Dutch young adults. Obes Res. 2004;12(4):688–94.CrossRefPubMed
30.
go back to reference Lewis LK, Maher C, Belanger K, Tremblay M, Chaput JP, Olds T. At the mercy of the gods: associations between weather, physical activity, and sedentary time in children. Pediatr Exerc Sci. 2016;28(1):152–63.PubMedCrossRef Lewis LK, Maher C, Belanger K, Tremblay M, Chaput JP, Olds T. At the mercy of the gods: associations between weather, physical activity, and sedentary time in children. Pediatr Exerc Sci. 2016;28(1):152–63.PubMedCrossRef
31.
go back to reference Watson A, Maher C, Tomkinson GR, Golley R, Fraysse F, Dumuid D, et al. Life on holidays: study protocol for a 3-year longitudinal study tracking changes in children’s fitness and fatness during the in-school versus summer holiday period. BMC Public Health. 2019;19(1):1353.PubMedPubMedCentralCrossRef Watson A, Maher C, Tomkinson GR, Golley R, Fraysse F, Dumuid D, et al. Life on holidays: study protocol for a 3-year longitudinal study tracking changes in children’s fitness and fatness during the in-school versus summer holiday period. BMC Public Health. 2019;19(1):1353.PubMedPubMedCentralCrossRef
32.
go back to reference Shaffer JA, Diaz K, Alcántara C, Edmondson D, Krupka DJ, Chaplin WF, et al. An inexpensive device for monitoring patients' weights via automated hovering. Int J Cardiol. 2014;172(2):e263–4.PubMedPubMedCentralCrossRef Shaffer JA, Diaz K, Alcántara C, Edmondson D, Krupka DJ, Chaplin WF, et al. An inexpensive device for monitoring patients' weights via automated hovering. Int J Cardiol. 2014;172(2):e263–4.PubMedPubMedCentralCrossRef
33.
go back to reference Yorkin M, Spaccarotella K, Martin-Biggers J, Quick V, Byrd-Bredbenner C. Accuracy and consistency of weights provided by home bathroom scales. BMC Public Health. 2013;13(1):1194.PubMedPubMedCentralCrossRef Yorkin M, Spaccarotella K, Martin-Biggers J, Quick V, Byrd-Bredbenner C. Accuracy and consistency of weights provided by home bathroom scales. BMC Public Health. 2013;13(1):1194.PubMedPubMedCentralCrossRef
34.
go back to reference Marfell-Jones MJ, Stewart AD, de Ridder JH. International standards for anthropometric assessment. Wellington: International Society for the Advancement of Kinanthropometry; 2012. Marfell-Jones MJ, Stewart AD, de Ridder JH. International standards for anthropometric assessment. Wellington: International Society for the Advancement of Kinanthropometry; 2012.
35.
go back to reference Wright SP, Collier SR, Brown TS, Sandberg K. An analysis of how consumer physical activity monitors are used in biomedical research. FASEB J. 2017;31(1_supplement):1020.1024. Wright SP, Collier SR, Brown TS, Sandberg K. An analysis of how consumer physical activity monitors are used in biomedical research. FASEB J. 2017;31(1_supplement):1020.1024.
36.
go back to reference Henriksen A, Haugen Mikalsen M, Woldaregay AZ, Muzny M, Hartvigsen G, Hopstock LA, et al. Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. J Med Internet Res. 2018;20(3):e110.PubMedPubMedCentralCrossRef Henriksen A, Haugen Mikalsen M, Woldaregay AZ, Muzny M, Hartvigsen G, Hopstock LA, et al. Using fitness trackers and smartwatches to measure physical activity in research: analysis of consumer wrist-worn wearables. J Med Internet Res. 2018;20(3):e110.PubMedPubMedCentralCrossRef
37.
go back to reference Reid RER, Insogna JA, Carver TE, Comptour AM, Bewski NA, Sciortino C, et al. Validity and reliability of Fitbit activity monitors compared to ActiGraph GT3X+ with female adults in a free-living environment. J Sci Med Sport. 2017;20(6):578–82.PubMedCrossRef Reid RER, Insogna JA, Carver TE, Comptour AM, Bewski NA, Sciortino C, et al. Validity and reliability of Fitbit activity monitors compared to ActiGraph GT3X+ with female adults in a free-living environment. J Sci Med Sport. 2017;20(6):578–82.PubMedCrossRef
38.
go back to reference de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker FC. A validation study of Fitbit charge 2™ compared with polysomnography in adults. Chronobiol Int. 2018;35(4):465–76.PubMedCrossRef de Zambotti M, Goldstone A, Claudatos S, Colrain IM, Baker FC. A validation study of Fitbit charge 2™ compared with polysomnography in adults. Chronobiol Int. 2018;35(4):465–76.PubMedCrossRef
39.
go back to reference Mantua J, Gravel N, Spencer RMC. Reliability of sleep measures from four personal health monitoring devices compared to research-based actigraphy and polysomnography. Sensors. 2016;16(5):646. Mantua J, Gravel N, Spencer RMC. Reliability of sleep measures from four personal health monitoring devices compared to research-based actigraphy and polysomnography. Sensors. 2016;16(5):646.
40.
go back to reference Murakami H, Kawakami R, Nakae S, Nakata Y, Ishikawa-Takata K, Tanaka S, et al. Accuracy of wearable devices for estimating total energy expenditure: comparison with metabolic chamber and doubly labeled water method. JAMA Intern Med. 2016;176(5):702–3.PubMedCrossRef Murakami H, Kawakami R, Nakae S, Nakata Y, Ishikawa-Takata K, Tanaka S, et al. Accuracy of wearable devices for estimating total energy expenditure: comparison with metabolic chamber and doubly labeled water method. JAMA Intern Med. 2016;176(5):702–3.PubMedCrossRef
41.
go back to reference Burton NW, Haynes M, Wilson L-AM, Giles-Corti B, Oldenburg BF, Brown WJ, et al. HABITAT: a longitudinal multilevel study of physical activity change in mid-aged adults. BMC Public Health. 2009;9:76.PubMedPubMedCentralCrossRef Burton NW, Haynes M, Wilson L-AM, Giles-Corti B, Oldenburg BF, Brown WJ, et al. HABITAT: a longitudinal multilevel study of physical activity change in mid-aged adults. BMC Public Health. 2009;9:76.PubMedPubMedCentralCrossRef
42.
go back to reference Milne RL, Fletcher AS, MacInnis RJ, Hodge AM, Hopkins AH, Bassett JK, et al. Cohort profile: The Melbourne Collaborative Cohort Study (Health 2020). Int J Epidemiol. 2017;46(6):1757–1757i.PubMedCrossRef Milne RL, Fletcher AS, MacInnis RJ, Hodge AM, Hopkins AH, Bassett JK, et al. Cohort profile: The Melbourne Collaborative Cohort Study (Health 2020). Int J Epidemiol. 2017;46(6):1757–1757i.PubMedCrossRef
43.
go back to reference Food Standards Australia New Zealand (FSANZ). NUTTAB 2010 – Australian Food Composition Tables. Canberra: FSANZ; 2013. Food Standards Australia New Zealand (FSANZ). NUTTAB 2010 – Australian Food Composition Tables. Canberra: FSANZ; 2013.
44.
go back to reference Food Standards Australia New Zealand (FSANZ). AUSNUT 2007—Australian Food Supplement and Nutrient Database for Estimation of Population Nutrient Intakes. Canberra: FSANZ; 2008. Food Standards Australia New Zealand (FSANZ). AUSNUT 2007—Australian Food Supplement and Nutrient Database for Estimation of Population Nutrient Intakes. Canberra: FSANZ; 2008.
45.
go back to reference Hebden L, Kostan E, O'Leary F, Hodge A, Allman-Farinelli M. Validity and reproducibility of a food frequency questionnaire as a measure of recent dietary intake in young adults. PLoS One. 2013;8(9):e75156.PubMedPubMedCentralCrossRef Hebden L, Kostan E, O'Leary F, Hodge A, Allman-Farinelli M. Validity and reproducibility of a food frequency questionnaire as a measure of recent dietary intake in young adults. PLoS One. 2013;8(9):e75156.PubMedPubMedCentralCrossRef
46.
go back to reference Xinying PX, Noakes M, Keogh J. Can a food frequency questionnaire be used to capture dietary intake data in a 4 week clinical intervention trial? Asia Pac J Clin Nutr. 2004;13(4):318.PubMed Xinying PX, Noakes M, Keogh J. Can a food frequency questionnaire be used to capture dietary intake data in a 4 week clinical intervention trial? Asia Pac J Clin Nutr. 2004;13(4):318.PubMed
47.
go back to reference Skevington SM, Lotfy M, O'Connell KA. The World Health Organization's WHOQOL-BREF quality of life assessment: psychometric properties and results of the international field trial. A report from the WHOQOL group. Qual Life Res. 2004;13(2):299–310.CrossRefPubMed Skevington SM, Lotfy M, O'Connell KA. The World Health Organization's WHOQOL-BREF quality of life assessment: psychometric properties and results of the international field trial. A report from the WHOQOL group. Qual Life Res. 2004;13(2):299–310.CrossRefPubMed
48.
go back to reference Hawthorne G, Herrman H, Murphy B. Interpreting the WHOQOL-Brèf: preliminary population norms and effect sizes. Soc Indic Res. 2006;77(1):37–59.CrossRef Hawthorne G, Herrman H, Murphy B. Interpreting the WHOQOL-Brèf: preliminary population norms and effect sizes. Soc Indic Res. 2006;77(1):37–59.CrossRef
49.
go back to reference Krägeloh CU, Kersten P, Rex Billington D, Hsu PH-C, Shepherd D, Landon J, et al. Validation of the WHOQOL-BREF quality of life questionnaire for general use in New Zealand: confirmatory factor analysis and Rasch analysis. Qual Life Res. 2013;22(6):1451–7.PubMedCrossRef Krägeloh CU, Kersten P, Rex Billington D, Hsu PH-C, Shepherd D, Landon J, et al. Validation of the WHOQOL-BREF quality of life questionnaire for general use in New Zealand: confirmatory factor analysis and Rasch analysis. Qual Life Res. 2013;22(6):1451–7.PubMedCrossRef
50.
go back to reference Chen W-C, Wang J-D, Hwang J-S, Chen C-C, Wu C-H, Yao G. Can the web-form WHOQOL-BREF be an alternative to the paper-form? Soc Indic Res. 2009;94(1):97–114.CrossRef Chen W-C, Wang J-D, Hwang J-S, Chen C-C, Wu C-H, Yao G. Can the web-form WHOQOL-BREF be an alternative to the paper-form? Soc Indic Res. 2009;94(1):97–114.CrossRef
51.
go back to reference Lovibond PF, Lovibond SH. Manual for the depression anxiety stress scales. 2nd ed. Sydney: Psychology Foundation; 1995. Lovibond PF, Lovibond SH. Manual for the depression anxiety stress scales. 2nd ed. Sydney: Psychology Foundation; 1995.
52.
go back to reference Henry JD, Crawford JR. The short-form version of the depression anxiety stress scales (DASS-21): construct validity and normative data in a large non-clinical sample. Br J Clin Psychol. 2005;44(2):227–39.PubMedCrossRef Henry JD, Crawford JR. The short-form version of the depression anxiety stress scales (DASS-21): construct validity and normative data in a large non-clinical sample. Br J Clin Psychol. 2005;44(2):227–39.PubMedCrossRef
53.
go back to reference Lovibond PF, Lovibond SH. The structure of negative emotional states: comparison of the depression anxiety stress scales (DASS) with the Beck depression and anxiety inventories. Behav Res Ther. 1995;33(3):335–43.PubMedCrossRef Lovibond PF, Lovibond SH. The structure of negative emotional states: comparison of the depression anxiety stress scales (DASS) with the Beck depression and anxiety inventories. Behav Res Ther. 1995;33(3):335–43.PubMedCrossRef
54.
go back to reference Herbert J, Peterson KL, Alston L, Allender S, Nichols M. Comparison between measured and perceived weight status in a nationally representative sample of Australian adults. Obes Res Clin Pract. 2017;11(4):414–25.PubMedCrossRef Herbert J, Peterson KL, Alston L, Allender S, Nichols M. Comparison between measured and perceived weight status in a nationally representative sample of Australian adults. Obes Res Clin Pract. 2017;11(4):414–25.PubMedCrossRef
55.
go back to reference Serdula MK, Williamson DF, Anda RF, Levy A, Heaton A, Byers T. Weight control practices in adults: results of a multistate telephone survey. Am J Public Health. 1994;84(11):1821–4.PubMedPubMedCentralCrossRef Serdula MK, Williamson DF, Anda RF, Levy A, Heaton A, Byers T. Weight control practices in adults: results of a multistate telephone survey. Am J Public Health. 1994;84(11):1821–4.PubMedPubMedCentralCrossRef
56.
go back to reference Wharton S, Raiber L, Serodio KJ, Lee J, Christensen RA. Medications that cause weight gain and alternatives in Canada: a narrative review. Diabetes Metab Syndr Obes. 2018;11:427–38.PubMedPubMedCentralCrossRef Wharton S, Raiber L, Serodio KJ, Lee J, Christensen RA. Medications that cause weight gain and alternatives in Canada: a narrative review. Diabetes Metab Syndr Obes. 2018;11:427–38.PubMedPubMedCentralCrossRef
57.
go back to reference Domecq JP, Prutsky G, Leppin A, Sonbol MB, Altayar O, Undavalli C, et al. Clinical review: drugs commonly associated with weight change: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(2):363–70.PubMedPubMedCentralCrossRef Domecq JP, Prutsky G, Leppin A, Sonbol MB, Altayar O, Undavalli C, et al. Clinical review: drugs commonly associated with weight change: a systematic review and meta-analysis. J Clin Endocrinol Metab. 2015;100(2):363–70.PubMedPubMedCentralCrossRef
58.
go back to reference Zubrick SR, Lucas N, Westrupp EM. Nicholson. Parenting measures in the longitudinal study of Australian children: construct validity and measurement quality, waves 1 to 4. Canberra: Australian Government; 2014. Zubrick SR, Lucas N, Westrupp EM. Nicholson. Parenting measures in the longitudinal study of Australian children: construct validity and measurement quality, waves 1 to 4. Canberra: Australian Government; 2014.
59.
go back to reference Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput J-P, Fogelholm M. The international study of childhood obesity, lifestyle and the environment (ISCOLE): design and methods. BMC Public Health. 2013;13(1):900.PubMedPubMedCentralCrossRef Katzmarzyk PT, Barreira TV, Broyles ST, Champagne CM, Chaput J-P, Fogelholm M. The international study of childhood obesity, lifestyle and the environment (ISCOLE): design and methods. BMC Public Health. 2013;13(1):900.PubMedPubMedCentralCrossRef
60.
go back to reference Anderson SE, Must A, Curtin C, Bandini LG. Meals in our household: reliability and initial validation of a questionnaire to assess child mealtime behaviors and family mealtime environments. J Acad Nutr Diet. 2012;112(2):276–84.PubMedPubMedCentralCrossRef Anderson SE, Must A, Curtin C, Bandini LG. Meals in our household: reliability and initial validation of a questionnaire to assess child mealtime behaviors and family mealtime environments. J Acad Nutr Diet. 2012;112(2):276–84.PubMedPubMedCentralCrossRef
61.
go back to reference Horne JA, Östberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110.PubMed Horne JA, Östberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110.PubMed
62.
go back to reference Sullivan KL, Mortimer JA, Wang W, Zesiewicz TA, Brownlee HJ Jr, Borenstein AR. Early-adult life correlates of personality in Parkinson’s disease. J Neurol Res. 2014;4(2–3):51–62. Sullivan KL, Mortimer JA, Wang W, Zesiewicz TA, Brownlee HJ Jr, Borenstein AR. Early-adult life correlates of personality in Parkinson’s disease. J Neurol Res. 2014;4(2–3):51–62.
63.
go back to reference Dumuid D, Pedišić Ž, Stanford TE, Martín-Fernández J-A, Hron K, Maher CA, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2017;28(3):846–57.PubMedCrossRef Dumuid D, Pedišić Ž, Stanford TE, Martín-Fernández J-A, Hron K, Maher CA, et al. The compositional isotemporal substitution model: a method for estimating changes in a health outcome for reallocation of time between sleep, physical activity and sedentary behaviour. Stat Methods Med Res. 2017;28(3):846–57.PubMedCrossRef
64.
go back to reference Dumuid D, Stanford TE, Martin-Fernández J-A, Pedišić Ž, Maher CA, Lewis LK, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res. 2017;27(12):3726–38.PubMedCrossRef Dumuid D, Stanford TE, Martin-Fernández J-A, Pedišić Ž, Maher CA, Lewis LK, et al. Compositional data analysis for physical activity, sedentary time and sleep research. Stat Methods Med Res. 2017;27(12):3726–38.PubMedCrossRef
66.
go back to reference Moores CJ, Maeder A, Miller J, Prichard I, Lewis LK, Bell LK, et al. A digital intervention for Australian adolescents above a healthy weight (health online for teens): protocol for an implementation and user experience study. JMIR Res Protoc. 2019;8(10):e13340.PubMedPubMedCentralCrossRef Moores CJ, Maeder A, Miller J, Prichard I, Lewis LK, Bell LK, et al. A digital intervention for Australian adolescents above a healthy weight (health online for teens): protocol for an implementation and user experience study. JMIR Res Protoc. 2019;8(10):e13340.PubMedPubMedCentralCrossRef
67.
go back to reference Yackobovitch-Gavan M, Wolf Linhard D, Nagelberg N, Poraz I, Shalitin S, Phillip M, et al. Intervention for childhood obesity based on parents only or parents and child compared with follow-up alone. Pediatr Obes. 2018;13(11):647–55.PubMedCrossRef Yackobovitch-Gavan M, Wolf Linhard D, Nagelberg N, Poraz I, Shalitin S, Phillip M, et al. Intervention for childhood obesity based on parents only or parents and child compared with follow-up alone. Pediatr Obes. 2018;13(11):647–55.PubMedCrossRef
Metadata
Title
Annual rhythms in adults’ lifestyle and health (ARIA): protocol for a 12-month longitudinal study examining temporal patterns in weight, activity, diet, and wellbeing in Australian adults
Authors
Rachel G. Curtis
Timothy Olds
François Fraysse
Dorothea Dumuid
Gilly A. Hendrie
Adrian Esterman
Wendy J. Brown
Ty Ferguson
Rajini Lagiseti
Carol A. Maher
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2021
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-020-10054-3

Other articles of this Issue 1/2021

BMC Public Health 1/2021 Go to the issue