Skip to main content
Top
Published in: BMC Public Health 1/2020

Open Access 01-12-2020 | COVID-19 | Research article

Early effects of the COVID-19 pandemic on physical activity and sedentary behavior in children living in the U.S.

Authors: Genevieve F. Dunton, Bridgette Do, Shirlene D. Wang

Published in: BMC Public Health | Issue 1/2020

Login to get access

Abstract

Background

COVID-19 restrictions such as the closure of schools and parks, and the cancellation of youth sports and activity classes around the United States may prevent children from achieving recommended levels of physical activity (PA). This study examined the effects of the COVID-19 pandemic on PA and sedentary behavior (SB) in U.S. children.

Method

Parents and legal guardians of U.S. children (ages 5–13) were recruited through convenience sampling and completed an online survey between April 25–May 16, 2020. Measures included an assessment of their child’s previous day PA and SB by indicating time spent in 11 common types of PA and 12 common types of SB for children. Parents also reported perceived changes in levels of PA and SB between the pre-COVID-19 (February 2020) and early-COVID-19 (April–May 2020) periods. Additionally, parents reported locations (e.g., home/garage, parks/trails, gyms/fitness centers) where their children had performed PA and their children’s use of remote/streaming services for PA.

Results

From parent reports, children (N = 211) (53% female, 13% Hispanic, Mage = 8.73 [SD = 2.58] years) represented 35 states and the District of Columbia. The most common physical activities during the early-COVID-19 period were free play/unstructured activity (e.g., running around, tag) (90% of children) and going for a walk (55% of children). Children engaged in about 90 min of school-related sitting and over 8 h of leisure-related sitting a day. Parents of older children (ages 9–13) vs. younger children (ages 5–8) perceived greater decreases in PA and greater increases in SB from the pre- to early-COVID-19 periods. Children were more likely to perform PA at home indoors or on neighborhood streets during the early- vs. pre-COVID-19 periods. About a third of children used remote/streaming services for activity classes and lessons during the early-COVID-19 period.

Conclusion

Short-term changes in PA and SB in reaction to COVID-19 may become permanently entrenched, leading to increased risk of obesity, diabetes, and cardiovascular disease in children. Programmatic and policy strategies should be geared towards promoting PA and reducing SB over the next 12 months.
Literature
4.
go back to reference U.S. Department of Health and Human Services. Physical activity guidelines for Americans. 2nd ed. Washington, DC: U.S. Department of Health and Human Services; 2018. U.S. Department of Health and Human Services. Physical activity guidelines for Americans. 2nd ed. Washington, DC: U.S. Department of Health and Human Services; 2018.
5.
go back to reference Fakhouri TH, Hughes JP, Brody DJ, Kit BK, Ogden CL. Physical activity and screen-time viewing among elementary school–aged children in the United States from 2009 to 2010. JAMA Pediatr. 2013;167(3):223–9.PubMedCrossRef Fakhouri TH, Hughes JP, Brody DJ, Kit BK, Ogden CL. Physical activity and screen-time viewing among elementary school–aged children in the United States from 2009 to 2010. JAMA Pediatr. 2013;167(3):223–9.PubMedCrossRef
6.
go back to reference Physical Activity Guidelines Advisory Committee. Physical activity guidelines advisory committee report. Washington, DC: Department of Health and Human Services; 2008. p. A1–H14. Physical Activity Guidelines Advisory Committee. Physical activity guidelines advisory committee report. Washington, DC: Department of Health and Human Services; 2008. p. A1–H14.
7.
go back to reference Woo BJ, Chang J, Hulse E, Turetsky R, Parkinson K, Rausch J. Zooming towards a telehealth solution for vulnerable children with obesity during COVID-19. Obesity. 2020;28(7):1184-6. Woo BJ, Chang J, Hulse E, Turetsky R, Parkinson K, Rausch J. Zooming towards a telehealth solution for vulnerable children with obesity during COVID-19. Obesity. 2020;28(7):1184-6.
8.
go back to reference Tandon PS, Zhou C, Sallis JF, Cain KL, Frank LD, Saelens BE. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int J Behav Nutr Phys Act. 2012;9(1):88.PubMedPubMedCentralCrossRef Tandon PS, Zhou C, Sallis JF, Cain KL, Frank LD, Saelens BE. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int J Behav Nutr Phys Act. 2012;9(1):88.PubMedPubMedCentralCrossRef
9.
go back to reference Ding D, Sallis JF, Kerr J, Lee S, Rosenberg DE. Neighborhood environment and physical activity among youth: a review. Am J Prev Med. 2011;41(4):442–55.PubMedCrossRef Ding D, Sallis JF, Kerr J, Lee S, Rosenberg DE. Neighborhood environment and physical activity among youth: a review. Am J Prev Med. 2011;41(4):442–55.PubMedCrossRef
10.
go back to reference Weir LA, Etelson D, Brand DA. Parents' perceptions of neighborhood safety and children's physical activity. Prev Med. 2006;43(3):212–7.PubMedCrossRef Weir LA, Etelson D, Brand DA. Parents' perceptions of neighborhood safety and children's physical activity. Prev Med. 2006;43(3):212–7.PubMedCrossRef
11.
go back to reference Roemmich JN, Epstein LH, Raja S, Yinw L, Robinson J, Winiewicz D. Association of access to parks and recreational facilities with the physical activity of young children. Prev Med. 2006;43(6):437–41.PubMedCrossRef Roemmich JN, Epstein LH, Raja S, Yinw L, Robinson J, Winiewicz D. Association of access to parks and recreational facilities with the physical activity of young children. Prev Med. 2006;43(6):437–41.PubMedCrossRef
12.
go back to reference Rundle AG, Park Y, Herbstman JB, Kinsey EW, Wang YC. COVID-19–related school closings and risk of weight gain among children. Obesity. 2020;28(6):1008-9. Rundle AG, Park Y, Herbstman JB, Kinsey EW, Wang YC. COVID-19–related school closings and risk of weight gain among children. Obesity. 2020;28(6):1008-9.
14.
go back to reference Ridgers ND, Salmon J, Parrish A-M, Stanley RM, Okely AD. Physical activity during school recess: a systematic review. Am J Prev Med. 2012;43(3):320–8.PubMedCrossRef Ridgers ND, Salmon J, Parrish A-M, Stanley RM, Okely AD. Physical activity during school recess: a systematic review. Am J Prev Med. 2012;43(3):320–8.PubMedCrossRef
15.
go back to reference Fairclough SJ, Stratton G. A review of physical activity levels during elementary school physical education. J Teach Phys Educ. 2006;25(2):240–58.CrossRef Fairclough SJ, Stratton G. A review of physical activity levels during elementary school physical education. J Teach Phys Educ. 2006;25(2):240–58.CrossRef
16.
go back to reference Cradock AL, Barrett JL, Carnoske C, Chriqui JF, Evenson KR, Gustat J, et al. Roles and strategies of state organizations related to school-based physical education and physical activity policies. J Public Health Manag Pract. 2013;19:S34–40.PubMedCrossRef Cradock AL, Barrett JL, Carnoske C, Chriqui JF, Evenson KR, Gustat J, et al. Roles and strategies of state organizations related to school-based physical education and physical activity policies. J Public Health Manag Pract. 2013;19:S34–40.PubMedCrossRef
18.
go back to reference Rowlands AV, Pilgrim EL, Eston RG. Patterns of habitual activity across weekdays and weekend days in 9–11-year-old children. Prev Med. 2008;46(4):317–24.PubMedCrossRef Rowlands AV, Pilgrim EL, Eston RG. Patterns of habitual activity across weekdays and weekend days in 9–11-year-old children. Prev Med. 2008;46(4):317–24.PubMedCrossRef
19.
go back to reference Fairclough SJ, Boddy LM, Mackintosh KA, Valencia-Peris A, Ramirez-Rico E. Weekday and weekend sedentary time and physical activity in differentially active children. J Sci Med Sport. 2015;18(4):444–9.PubMedCrossRef Fairclough SJ, Boddy LM, Mackintosh KA, Valencia-Peris A, Ramirez-Rico E. Weekday and weekend sedentary time and physical activity in differentially active children. J Sci Med Sport. 2015;18(4):444–9.PubMedCrossRef
20.
go back to reference Franckle R, Adler R, Davison K. Peer reviewed: accelerated weight gain among children during summer versus school year and related racial/ethnic disparities: a systematic review. Prev Chronic Dis. 2014;11:E101. Franckle R, Adler R, Davison K. Peer reviewed: accelerated weight gain among children during summer versus school year and related racial/ethnic disparities: a systematic review. Prev Chronic Dis. 2014;11:E101.
21.
go back to reference Tanskey LA, Goldberg J, Chui K, Must A, Sacheck J. The state of the summer: a review of child summer weight gain and efforts to prevent it. Curr Obes Rep. 2018;7(2):112–21.PubMedPubMedCentralCrossRef Tanskey LA, Goldberg J, Chui K, Must A, Sacheck J. The state of the summer: a review of child summer weight gain and efforts to prevent it. Curr Obes Rep. 2018;7(2):112–21.PubMedPubMedCentralCrossRef
22.
go back to reference Quinto Romani A. Children’s weight and participation in organized sports. Scand J Public Health. 2011;39(7):687–95.PubMedCrossRef Quinto Romani A. Children’s weight and participation in organized sports. Scand J Public Health. 2011;39(7):687–95.PubMedCrossRef
23.
go back to reference Wahl-Alexander Z, Brusseau T, Burns R. Changes in daily step counts and health-related fitness after a sports-based residential summer camp in boys. SCHOLE: J Leisure Stud Recreation Educ. 2020;35(2):1–10. Wahl-Alexander Z, Brusseau T, Burns R. Changes in daily step counts and health-related fitness after a sports-based residential summer camp in boys. SCHOLE: J Leisure Stud Recreation Educ. 2020;35(2):1–10.
24.
go back to reference Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.PubMedCrossRef Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42(2):377–81.PubMedCrossRef
26.
go back to reference Millstein RA, Strobel J, Kerr J, Sallis JF, Norman GJ, Durant N, et al. Home, school, and neighborhood environment factors and youth physical activity. Pediatr Exerc Sci. 2011;23(4):487–503.PubMedCrossRef Millstein RA, Strobel J, Kerr J, Sallis JF, Norman GJ, Durant N, et al. Home, school, and neighborhood environment factors and youth physical activity. Pediatr Exerc Sci. 2011;23(4):487–503.PubMedCrossRef
30.
go back to reference Oreskovic NM, Blossom J, Field AE, Chiang SR, Winickoff JP, Kleinman RE. Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Geospat Health. 2012;6(2):263–72. Oreskovic NM, Blossom J, Field AE, Chiang SR, Winickoff JP, Kleinman RE. Combining global positioning system and accelerometer data to determine the locations of physical activity in children. Geospat Health. 2012;6(2):263–72.
31.
go back to reference McGall SE, McGuigan MR, Nottle C. Contribution of free play towards physical activity guidelines for New Zealand primary school children aged 7–9 years. Br J Sports Med. 2011;45(2):120–4.PubMedCrossRef McGall SE, McGuigan MR, Nottle C. Contribution of free play towards physical activity guidelines for New Zealand primary school children aged 7–9 years. Br J Sports Med. 2011;45(2):120–4.PubMedCrossRef
32.
go back to reference Eyler A, Nanney MS, Brownson RC, Lohman D, Haire-Joshu D. Correlates of after-school activity preference in children ages 5–12: the PARADE study. Am J Health Educ. 2006;37(2):69–77.CrossRef Eyler A, Nanney MS, Brownson RC, Lohman D, Haire-Joshu D. Correlates of after-school activity preference in children ages 5–12: the PARADE study. Am J Health Educ. 2006;37(2):69–77.CrossRef
33.
go back to reference Treuth MS, Baggett CD, Pratt CA, Going SB, Elder JP, Charneco EY, et al. A longitudinal study of sedentary behavior and overweight in adolescent girls. Obesity. 2009;17(5):1003–8.PubMedCrossRef Treuth MS, Baggett CD, Pratt CA, Going SB, Elder JP, Charneco EY, et al. A longitudinal study of sedentary behavior and overweight in adolescent girls. Obesity. 2009;17(5):1003–8.PubMedCrossRef
34.
go back to reference Verloigne M, Van Lippevelde W, Maes L, Yıldırım M, Chinapaw M, Manios Y, et al. Levels of physical activity and sedentary time among 10-to 12-year-old boys and girls across 5 European countries using accelerometers: an observational study within the ENERGY-project. Int J Behav Nutr Phys Act. 2012;9(1):34.PubMedPubMedCentralCrossRef Verloigne M, Van Lippevelde W, Maes L, Yıldırım M, Chinapaw M, Manios Y, et al. Levels of physical activity and sedentary time among 10-to 12-year-old boys and girls across 5 European countries using accelerometers: an observational study within the ENERGY-project. Int J Behav Nutr Phys Act. 2012;9(1):34.PubMedPubMedCentralCrossRef
35.
go back to reference Dalene K, Anderssen S, Andersen L, Steene-Johannessen J, Ekelund U, Hansen B, et al. Secular and longitudinal physical activity changes in population-based samples of children and adolescents. Scand J Med Sci Sports. 2018;28(1):161–71.PubMedCrossRef Dalene K, Anderssen S, Andersen L, Steene-Johannessen J, Ekelund U, Hansen B, et al. Secular and longitudinal physical activity changes in population-based samples of children and adolescents. Scand J Med Sci Sports. 2018;28(1):161–71.PubMedCrossRef
36.
go back to reference Harding SK, Page AS, Falconer C, Cooper AR. Longitudinal changes in sedentary time and physical activity during adolescence. Int J Behav Nutr Phys Act. 2015;12(1):44.PubMedPubMedCentralCrossRef Harding SK, Page AS, Falconer C, Cooper AR. Longitudinal changes in sedentary time and physical activity during adolescence. Int J Behav Nutr Phys Act. 2015;12(1):44.PubMedPubMedCentralCrossRef
37.
go back to reference Brodersen NH, Steptoe A, Boniface DR, Wardle J. Trends in physical activity and sedentary behaviour in adolescence: ethnic and socioeconomic differences. Br J Sports Med. 2007;41(3):140–4.PubMedCrossRef Brodersen NH, Steptoe A, Boniface DR, Wardle J. Trends in physical activity and sedentary behaviour in adolescence: ethnic and socioeconomic differences. Br J Sports Med. 2007;41(3):140–4.PubMedCrossRef
38.
go back to reference Dunton GF, Yang C-H, Zink J, Dzubur E, Belcher BR. Longitudinal changes in Children's accelerometer-derived activity pattern metrics. Med Sci Sports Exerc. 2019;52(6):1307-13. Dunton GF, Yang C-H, Zink J, Dzubur E, Belcher BR. Longitudinal changes in Children's accelerometer-derived activity pattern metrics. Med Sci Sports Exerc. 2019;52(6):1307-13.
39.
go back to reference Whitt-Glover MC, Ham SA, Yancey AK. Instant recess®: a practical tool for increasing physical activity during the school day. Prog Community Health Partnersh. 2011;5(3):289–97.PubMedCrossRef Whitt-Glover MC, Ham SA, Yancey AK. Instant recess®: a practical tool for increasing physical activity during the school day. Prog Community Health Partnersh. 2011;5(3):289–97.PubMedCrossRef
40.
go back to reference Watson A, Timperio A, Brown H, Best K, Hesketh KD. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017;14(1):114.PubMedPubMedCentralCrossRef Watson A, Timperio A, Brown H, Best K, Hesketh KD. Effect of classroom-based physical activity interventions on academic and physical activity outcomes: a systematic review and meta-analysis. Int J Behav Nutr Phys Act. 2017;14(1):114.PubMedPubMedCentralCrossRef
41.
go back to reference Bélanger M, Gray-Donald K, O'loughlin J, Paradis G, Hanley J. Influence of weather conditions and season on physical activity in adolescents. Ann Epidemiol. 2009;19(3):180–6.PubMedCrossRef Bélanger M, Gray-Donald K, O'loughlin J, Paradis G, Hanley J. Influence of weather conditions and season on physical activity in adolescents. Ann Epidemiol. 2009;19(3):180–6.PubMedCrossRef
42.
go back to reference Mattocks C, Leary S, Ness A, Deere K, Saunders J, Kirkby J, et al. Intraindividual variation of objectively measured physical activity in children. Med Sci Sports Exerc. 2007;39(4):622–9.PubMedCrossRef Mattocks C, Leary S, Ness A, Deere K, Saunders J, Kirkby J, et al. Intraindividual variation of objectively measured physical activity in children. Med Sci Sports Exerc. 2007;39(4):622–9.PubMedCrossRef
43.
go back to reference Aarts M, Wendel-Vos W, van Oers H, van de Goor I, És Schuit A. Environmental determinants of Outfoor play in children. Am J Prev Med. 2010;39(3):212–9.PubMedCrossRef Aarts M, Wendel-Vos W, van Oers H, van de Goor I, És Schuit A. Environmental determinants of Outfoor play in children. Am J Prev Med. 2010;39(3):212–9.PubMedCrossRef
47.
go back to reference Global Wellness Institute, Move to be Well: The Global Economy of Physical Activity, 2019. Global Wellness Institute, Move to be Well: The Global Economy of Physical Activity, 2019.
Metadata
Title
Early effects of the COVID-19 pandemic on physical activity and sedentary behavior in children living in the U.S.
Authors
Genevieve F. Dunton
Bridgette Do
Shirlene D. Wang
Publication date
01-12-2020
Publisher
BioMed Central
Keyword
COVID-19
Published in
BMC Public Health / Issue 1/2020
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-020-09429-3

Other articles of this Issue 1/2020

BMC Public Health 1/2020 Go to the issue