Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Anemia | Research article

Prevalence of diabetes and pre-diabetes in rural Tehri Garhwal, India: influence of diagnostic method

Authors: Pam Anderson, Nathan Grills, Rajesh Singh, Rajkumari Singh, Roger G. Evans, Paramita Sengupta, Amanda G. Thrift

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

There are few available data regarding the prevalence of diabetes in the sub-Himalayan region of India. The aim of this study was to determine the prevalence of pre-diabetes and diabetes in rural Garhwal based on glycosylated hemoglobin.

Methods

In a cross-sectional survey of 500 adults from five randomly selected villages in Chamba, a mountainous Tehri Garhwal district in Uttarakhand in north-west India, we determined the prevalence of diabetes (hemoglobin (Hb) A1c ≥ 6.5%) and pre-diabetes (5.7% ≤ HbA1c ≤ 6.4%). In a sub-sample of those diagnosed with diabetes or pre-diabetes (n = 140), fasting blood glucose (FBG, n = 117) or postprandial blood glucose (PBG, n = 23), and blood hemoglobin concentration, was measured at follow-up.

Results

Based on HbA1c, 10.0% had diabetes and 56.4% pre-diabetes. Of those diagnosed as diabetic by HbA1c, 10 of 16 (62.5%) were diagnosed as diabetic by FBG (> 125 mg/dL) or PBG (≥200 mg/dL). In those diagnosed as pre-diabetic by HbA1c, only 55 of 124 (44.4%) were diagnosed as pre-diabetic by FBG (100–125 mg/dL) or PBG (140–199 mg/dL). A large proportion of these 140 individuals (67.1%) were moderately to severely anemic (Hb < 11.4 mg/dL). The diagnostic gap for pre-diabetes between HbA1c and FBG/PBG was similar for the groups with and without moderate to severe anemia.

Conclusions

HbA1c and FBG/PBG have similar diagnostic performance for diabetes in this population. However, many individuals were diagnosed with pre-diabetes by HbA1c but not FBG/PBG. The relative excess diagnosis of pre-diabetes with HbA1c does not appear to be explained by anemia, an endemic condition in India. The prognostic significance of diagnosis of pre-diabetes by HbA1c but not FBG/PBG remains unknown, but merits investigation.
Appendix
Available only for authorised users
Literature
1.
go back to reference Roglic G, Unwin N. Mortality attributable to diabetes: estimates for the year 2010. Diabetes Res Clin Pract. 2010;87:15–9.CrossRef Roglic G, Unwin N. Mortality attributable to diabetes: estimates for the year 2010. Diabetes Res Clin Pract. 2010;87:15–9.CrossRef
2.
go back to reference Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.CrossRef Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.CrossRef
3.
go back to reference Misra P, Upadhyay RP, Misra A, Anand K. A review of the epidemiology of diabetes in rural India. Diabetes Res Clin Pract. 2011;92:303–11.CrossRef Misra P, Upadhyay RP, Misra A, Anand K. A review of the epidemiology of diabetes in rural India. Diabetes Res Clin Pract. 2011;92:303–11.CrossRef
4.
go back to reference Anjana RM, Deepa M, Pradeepa R, Mahanta J, Narain K, Das HK, et al. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR-INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol. 2017;5:585–96.CrossRef Anjana RM, Deepa M, Pradeepa R, Mahanta J, Narain K, Das HK, et al. Prevalence of diabetes and prediabetes in 15 states of India: results from the ICMR-INDIAB population-based cross-sectional study. Lancet Diabetes Endocrinol. 2017;5:585–96.CrossRef
5.
go back to reference Kumar PR, Bhansali A, Ravikiran M, Bhansali S, Dutta P, Thakur JS, et al. Utility of glycated hemoglobin in diagnosing type 2 diabetes mellitus: a community-based study. J Clin Endocrinol Metab. 2010;95:2832–5.CrossRef Kumar PR, Bhansali A, Ravikiran M, Bhansali S, Dutta P, Thakur JS, et al. Utility of glycated hemoglobin in diagnosing type 2 diabetes mellitus: a community-based study. J Clin Endocrinol Metab. 2010;95:2832–5.CrossRef
6.
go back to reference Mohan V, Deepa M, Deepa R, Shanthirani CS, Farooq S, Ganesan A, et al. Secular trends in the prevalence of diabetes and impaired glucose tolerance in urban South India--the Chennai Urban Rural Epidemiology Study (CURES-17). Diabetologia. 2006;49:1175–8.CrossRef Mohan V, Deepa M, Deepa R, Shanthirani CS, Farooq S, Ganesan A, et al. Secular trends in the prevalence of diabetes and impaired glucose tolerance in urban South India--the Chennai Urban Rural Epidemiology Study (CURES-17). Diabetologia. 2006;49:1175–8.CrossRef
7.
go back to reference Ramachandran A, Snehalatha C, Kapur A, Vijay V, Mohan V, Das AK, et al. High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia. 2001;44:1094–101.CrossRef Ramachandran A, Snehalatha C, Kapur A, Vijay V, Mohan V, Das AK, et al. High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia. 2001;44:1094–101.CrossRef
8.
go back to reference Ravikumar P, Bhansali A, Ravikiran M, Bhansali S, Walia R, Shanmugasundar G, et al. Prevalence and risk factors of diabetes in a community-based study in North India: the Chandigarh Urban Diabetes Study (CUDS). Diabetes Metab. 2011;37:216–21.CrossRef Ravikumar P, Bhansali A, Ravikiran M, Bhansali S, Walia R, Shanmugasundar G, et al. Prevalence and risk factors of diabetes in a community-based study in North India: the Chandigarh Urban Diabetes Study (CUDS). Diabetes Metab. 2011;37:216–21.CrossRef
9.
go back to reference American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62–9.CrossRef American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33(Suppl 1):S62–9.CrossRef
10.
go back to reference Florkowski C. HbA1c as a diagnostic test for diabetes mellitus–reviewing the evidence. Clin Biochem Rev. 2013;34(2):75–83.PubMedPubMedCentral Florkowski C. HbA1c as a diagnostic test for diabetes mellitus–reviewing the evidence. Clin Biochem Rev. 2013;34(2):75–83.PubMedPubMedCentral
11.
go back to reference Bennett CM, Guo M, Dharmage SC. HbA (1c) as a screening tool for detection of type 2 diabetes: a systematic review. Diabet Med. 2007;24:333–43. Bennett CM, Guo M, Dharmage SC. HbA (1c) as a screening tool for detection of type 2 diabetes: a systematic review. Diabet Med. 2007;24:333–43.
12.
go back to reference Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights. 2016;11:95–104. Sherwani SI, Khan HA, Ekhzaimy A, Masood A, Sakharkar MK. Significance of HbA1c test in diagnosis and prognosis of diabetic patients. Biomark Insights. 2016;11:95–104.
13.
go back to reference Sacks DB. A1c versus glucose testing: a comparison. Diabetes Care. 2011;34:518–23.CrossRef Sacks DB. A1c versus glucose testing: a comparison. Diabetes Care. 2011;34:518–23.CrossRef
14.
go back to reference English E, Idris I, Smith G, Dhatariya K, Kilpatrick ES, John WG. The effect of anaemia and abnormalities of erythrocyte indices on HbA1c analysis: a systematic review. Diabetologia. 2015;58:1409–21.CrossRef English E, Idris I, Smith G, Dhatariya K, Kilpatrick ES, John WG. The effect of anaemia and abnormalities of erythrocyte indices on HbA1c analysis: a systematic review. Diabetologia. 2015;58:1409–21.CrossRef
15.
go back to reference Hardikar PS, Joshi SM, Bhat DS, Raut DA, Katre PA, Lubree HG, et al. Spuriously high prevalence of prediabetes diagnosed by HbA (1c) in young Indians partly explained by hematological factors and iron deficiency anemia. Diabetes Care. 2012;35(4):797–802.CrossRef Hardikar PS, Joshi SM, Bhat DS, Raut DA, Katre PA, Lubree HG, et al. Spuriously high prevalence of prediabetes diagnosed by HbA (1c) in young Indians partly explained by hematological factors and iron deficiency anemia. Diabetes Care. 2012;35(4):797–802.CrossRef
16.
go back to reference Malhotra P, Kumari S, Kumar R, Varma S. Prevalence of anemia in adult rural population of North India. J Assoc Physicians India. 2004;52:18–20.PubMed Malhotra P, Kumari S, Kumar R, Varma S. Prevalence of anemia in adult rural population of North India. J Assoc Physicians India. 2004;52:18–20.PubMed
17.
go back to reference Kassebaum NJ, on behalf of the GBD 2013 Anemia Collaborators. The global burden of anemia. Hematol Oncol Clin North Am. 2016;30:247–308. Kassebaum NJ, on behalf of the GBD 2013 Anemia Collaborators. The global burden of anemia. Hematol Oncol Clin North Am. 2016;30:247–308.
18.
go back to reference World Health Organization. Hemoglobin concentrations for the diagnosis of anemia and assessment of severity: WHO/NMH/NHD/MNM/11.1; 2011. World Health Organization. Hemoglobin concentrations for the diagnosis of anemia and assessment of severity: WHO/NMH/NHD/MNM/11.1; 2011.
19.
go back to reference Jayawardena R, Ranasinghe P, Byrne NM, Soares MJ, Katulanda P, Hills AP. Prevalence and trends of the diabetes epidemic in South Asia: a systematic review and meta-analysis. BMC Public Health. 2012;12:380.CrossRef Jayawardena R, Ranasinghe P, Byrne NM, Soares MJ, Katulanda P, Hills AP. Prevalence and trends of the diabetes epidemic in South Asia: a systematic review and meta-analysis. BMC Public Health. 2012;12:380.CrossRef
20.
go back to reference Du TT, Yin P, Zhang JH, Zhang D, Shi W, Yu XF. Comparison of the performance of HbA1c and fasting plasma glucose in identifying dysglycaemic status in Chinese high-risk subjects. Clin Exp Pharmacol Physiol. 2013;40:63–8.CrossRef Du TT, Yin P, Zhang JH, Zhang D, Shi W, Yu XF. Comparison of the performance of HbA1c and fasting plasma glucose in identifying dysglycaemic status in Chinese high-risk subjects. Clin Exp Pharmacol Physiol. 2013;40:63–8.CrossRef
21.
go back to reference Radhakrishna P, Vinod KV, Sujiv A, Swaminathan RP. Comparison of Hemoglobin A1c with fasting and 2-h plasma glucose tests for diagnosis of diabetes and prediabetes among high-risk South Indians. Indian J Endocrinol Metab. 2018;22(1):50–6. Radhakrishna P, Vinod KV, Sujiv A, Swaminathan RP. Comparison of Hemoglobin A1c with fasting and 2-h plasma glucose tests for diagnosis of diabetes and prediabetes among high-risk South Indians. Indian J Endocrinol Metab. 2018;22(1):50–6.
22.
go back to reference Araneta MRG, Grandinetti A, Chang HK. A1c and diabetes diagnosis among Filipino-Americans, Japanese-Americans, and native Hawaiians. Diabetes Care. 2010;33:2626–8.CrossRef Araneta MRG, Grandinetti A, Chang HK. A1c and diabetes diagnosis among Filipino-Americans, Japanese-Americans, and native Hawaiians. Diabetes Care. 2010;33:2626–8.CrossRef
23.
go back to reference Bazo-Alvarez JC, Quispe R, Pillay TD, Bernabé-Ortiz A, Smeeth L, Checkley W, et al. Glycated haemoglobin (HbA1c) and fasting plasma glucose relationships in sea-level and high-altitude settings. Diabet Med. 2017;34:804–12.CrossRef Bazo-Alvarez JC, Quispe R, Pillay TD, Bernabé-Ortiz A, Smeeth L, Checkley W, et al. Glycated haemoglobin (HbA1c) and fasting plasma glucose relationships in sea-level and high-altitude settings. Diabet Med. 2017;34:804–12.CrossRef
24.
go back to reference Ho-Pham LT, Nguyen UDT, Tran TX, Nguyen TV. Discordance in the diagnosis of diabetes: comparison between HbA1c and fasting plasma glucose. PLoS One. 2017;12:e0182192.CrossRef Ho-Pham LT, Nguyen UDT, Tran TX, Nguyen TV. Discordance in the diagnosis of diabetes: comparison between HbA1c and fasting plasma glucose. PLoS One. 2017;12:e0182192.CrossRef
25.
go back to reference Mayega RW, Guwatudde D, Makumbi FE, Nakwagala FN, Peterson S, Tomson G, et al. Comparison of fasting plasma glucose and haemoglobin A1c point-of-care tests in screening for diabetes and abnormal glucose regulation in a rural low income setting. Diabetes Res Clin Pract. 2014;104:112–20.CrossRef Mayega RW, Guwatudde D, Makumbi FE, Nakwagala FN, Peterson S, Tomson G, et al. Comparison of fasting plasma glucose and haemoglobin A1c point-of-care tests in screening for diabetes and abnormal glucose regulation in a rural low income setting. Diabetes Res Clin Pract. 2014;104:112–20.CrossRef
26.
go back to reference Pinelli NR, Jantz AS, Martin ET, Jaber LA. Sensitivity and specificity of glycated hemoglobin as a diagnostic test for diabetes and prediabetes in Arabs. J Clin Endocrinol Metab. 2011;96:E1680–3.CrossRef Pinelli NR, Jantz AS, Martin ET, Jaber LA. Sensitivity and specificity of glycated hemoglobin as a diagnostic test for diabetes and prediabetes in Arabs. J Clin Endocrinol Metab. 2011;96:E1680–3.CrossRef
27.
go back to reference Herman WH, Cohen RM. Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab. 2012;97:1067–72.CrossRef Herman WH, Cohen RM. Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab. 2012;97:1067–72.CrossRef
28.
go back to reference Venkataraman K, Kao SL, Thai AC, Salim A, Lee JJ, Heng D, et al. Ethnicity modifies the relation between fasting plasma glucose and HbA1c in Indians, Malays and Chinese. Diabet Med. 2012;29:911–7.CrossRef Venkataraman K, Kao SL, Thai AC, Salim A, Lee JJ, Heng D, et al. Ethnicity modifies the relation between fasting plasma glucose and HbA1c in Indians, Malays and Chinese. Diabet Med. 2012;29:911–7.CrossRef
29.
go back to reference Mann DM, Carson AP, Shimbo D, Fonseca V, Fox CS, Muntner P. Impact of A1c screening criterion on the diagnosis of pre-diabetes among U.S. adults. Diabetes Care. 2010;33:2190–5.CrossRef Mann DM, Carson AP, Shimbo D, Fonseca V, Fox CS, Muntner P. Impact of A1c screening criterion on the diagnosis of pre-diabetes among U.S. adults. Diabetes Care. 2010;33:2190–5.CrossRef
30.
go back to reference Hirst JA, McLellan JH, Price CP, English E, Feakins BG, Stevens RJ, et al. Performance of point-of-care HbA1c test devices: implications for use in clinical practice–a systematic review and meta-analysis. Clin Chem Lab Med. 2017;55:167–80.CrossRef Hirst JA, McLellan JH, Price CP, English E, Feakins BG, Stevens RJ, et al. Performance of point-of-care HbA1c test devices: implications for use in clinical practice–a systematic review and meta-analysis. Clin Chem Lab Med. 2017;55:167–80.CrossRef
31.
go back to reference Lenters-Westra E, Slingerland RJ. Six of eight hemoglobin A1c point-of-care instruments do not meet the general accepted analytical performance criteria. Clin Chem. 2010;56:44–52.CrossRef Lenters-Westra E, Slingerland RJ. Six of eight hemoglobin A1c point-of-care instruments do not meet the general accepted analytical performance criteria. Clin Chem. 2010;56:44–52.CrossRef
32.
go back to reference Warren B, Pankow JS, Matsushita K, Punjabi NM, Daya NR, Grams M, et al. Comparative prognostic performance of definitions of prediabetes: a prospective cohort analysis of the Atherosclerosis Risk In Communities (ARIC) study. Lancet Diabetes Endocrinol. 2017;5:34–42.CrossRef Warren B, Pankow JS, Matsushita K, Punjabi NM, Daya NR, Grams M, et al. Comparative prognostic performance of definitions of prediabetes: a prospective cohort analysis of the Atherosclerosis Risk In Communities (ARIC) study. Lancet Diabetes Endocrinol. 2017;5:34–42.CrossRef
33.
go back to reference Bansal N. Prediabetes diagnosis and treatment: a review. World J Diabetes. 2015;6:296.CrossRef Bansal N. Prediabetes diagnosis and treatment: a review. World J Diabetes. 2015;6:296.CrossRef
34.
go back to reference Barry E, Roberts S, Oke J, Vijayaraghavan S, Normansell R, Greenhalgh T. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: systematic review and meta-analysis of screening tests and interventions. BMJ. 2017;356:i6538.CrossRef Barry E, Roberts S, Oke J, Vijayaraghavan S, Normansell R, Greenhalgh T. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: systematic review and meta-analysis of screening tests and interventions. BMJ. 2017;356:i6538.CrossRef
35.
go back to reference Misra S. A flawed reference in assessing diagnostic accuracy leads to erroneous conclusions. BMJ. 2017;356. Misra S. A flawed reference in assessing diagnostic accuracy leads to erroneous conclusions. BMJ. 2017;356.
36.
go back to reference Hong L-F, Li X-L, Guo Y-L, Luo S-H, Zhu C-G, Qing P, et al. Glycosylated hemoglobin A1c as a marker predicting the severity of coronary artery disease and early outcome in patients with stable angina. Lipids Health Dis. 2014;13:89.CrossRef Hong L-F, Li X-L, Guo Y-L, Luo S-H, Zhu C-G, Qing P, et al. Glycosylated hemoglobin A1c as a marker predicting the severity of coronary artery disease and early outcome in patients with stable angina. Lipids Health Dis. 2014;13:89.CrossRef
37.
go back to reference Khaw K-T, Wareham N, Luben R, Bingham S, Oakes S, Welch A, et al. Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European Prospective Investigation of Cancer and nutrition (EPIC-Norfolk). BMJ. 2001;322:15.CrossRef Khaw K-T, Wareham N, Luben R, Bingham S, Oakes S, Welch A, et al. Glycated haemoglobin, diabetes, and mortality in men in Norfolk cohort of European Prospective Investigation of Cancer and nutrition (EPIC-Norfolk). BMJ. 2001;322:15.CrossRef
38.
go back to reference Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362:800–11.CrossRef Selvin E, Steffes MW, Zhu H, Matsushita K, Wagenknecht L, Pankow J, et al. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N Engl J Med. 2010;362:800–11.CrossRef
39.
go back to reference Sarwar N, Gao P, Seshasai S, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.CrossRef Sarwar N, Gao P, Seshasai S, Gobin R, Kaptoge S, Di Angelantonio E, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010;375:2215–22.CrossRef
40.
go back to reference Seshasai SRK, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364:829–41.CrossRef Seshasai SRK, Kaptoge S, Thompson A, Di Angelantonio E, Gao P, Sarwar N, et al. Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med. 2011;364:829–41.CrossRef
41.
go back to reference Zhang X, Gregg EW, Williamson DF, Barker LE, Thomas W, Bullard KM, et al. A1c level and future risk of diabetes: a systematic review. Diabetes Care. 2010;33:1665–73.CrossRef Zhang X, Gregg EW, Williamson DF, Barker LE, Thomas W, Bullard KM, et al. A1c level and future risk of diabetes: a systematic review. Diabetes Care. 2010;33:1665–73.CrossRef
42.
go back to reference Genuth S, Kahn R. A step backward—or is it forward? Diabetes Care. 2008;31:1093–6.CrossRef Genuth S, Kahn R. A step backward—or is it forward? Diabetes Care. 2008;31:1093–6.CrossRef
43.
go back to reference Gerstein H, Pogue J, Mann J, Lonn E, Dagenais G, McQueen M, et al. The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study: a prospective epidemiological analysis. Diabetologia. 2005;48:1749–55.CrossRef Gerstein H, Pogue J, Mann J, Lonn E, Dagenais G, McQueen M, et al. The relationship between dysglycaemia and cardiovascular and renal risk in diabetic and non-diabetic participants in the HOPE study: a prospective epidemiological analysis. Diabetologia. 2005;48:1749–55.CrossRef
44.
go back to reference Morris DH, Khunti K, Achana F, Srinivasan B, Gray LJ, Davies MJ, et al. Progression rates from HbA1c 6.0–6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologia. 2013;56:1489–93.CrossRef Morris DH, Khunti K, Achana F, Srinivasan B, Gray LJ, Davies MJ, et al. Progression rates from HbA1c 6.0–6.4% and other prediabetes definitions to type 2 diabetes: a meta-analysis. Diabetologia. 2013;56:1489–93.CrossRef
45.
go back to reference Ford ES, Cowie CC, Li C, Handelsman Y, Bloomgarden ZT. Iron-deficiency anemia, non-iron-deficiency anemia and HbA1c among adults in the US. J Diabetes. 2011;3:67–73.CrossRef Ford ES, Cowie CC, Li C, Handelsman Y, Bloomgarden ZT. Iron-deficiency anemia, non-iron-deficiency anemia and HbA1c among adults in the US. J Diabetes. 2011;3:67–73.CrossRef
46.
go back to reference Gallagher EJ, Le Roith D, Bloomgarden Z. Review of hemoglobin a (1c) in the management of diabetes. J Diabetes. 2009;1:9–17.CrossRef Gallagher EJ, Le Roith D, Bloomgarden Z. Review of hemoglobin a (1c) in the management of diabetes. J Diabetes. 2009;1:9–17.CrossRef
Metadata
Title
Prevalence of diabetes and pre-diabetes in rural Tehri Garhwal, India: influence of diagnostic method
Authors
Pam Anderson
Nathan Grills
Rajesh Singh
Rajkumari Singh
Roger G. Evans
Paramita Sengupta
Amanda G. Thrift
Publication date
01-12-2019
Publisher
BioMed Central
Keyword
Anemia
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-7184-4

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue