Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Research article

Distinct trajectories of physical activity and related factors during the life course in the general population: a systematic review

Authors: Irinja Lounassalo, Kasper Salin, Anna Kankaanpää, Mirja Hirvensalo, Sanna Palomäki, Asko Tolvanen, Xiaolin Yang, Tuija H. Tammelin

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

In recent years, researchers have begun applying a trajectory approach to identify homogeneous subgroups of physical activity (PA) in heterogeneous populations. This study systematically reviewed the articles identifying longitudinal PA trajectory classes and the related factors (e.g., determinants, predictors, and outcomes) in the general population during different life phases.

Methods

The included studies used finite mixture models for identifying trajectories of PA, exercise, or sport participation. Three electronic databases, PubMed (Medline), Web of Science, and CINAHL, were searched from the year 2000 to 13 February 2018. The study was conducted according to the PRISMA recommendations.

Results

Twenty-seven articles were included and organized into three age group: youngest (eleven articles), middle (eight articles), and oldest (eight articles). The youngest group consisted mainly of youth, the middle group of adults and the oldest group of late middle-aged and older adults. Most commonly, three or four trajectory classes were reported. Several trajectories describing a decline in PA were reported, especially in the youngest group, whereas trajectories of consistently increasing PA were observed in the middle and oldest group. While the proportion of persistently physically inactive individuals increased with age, the proportion was relatively high at all ages. Generally, male gender, being Caucasian, non-smoking, having low television viewing time, higher socioeconomic status, no chronic illnesses, and family support for PA were associated either with persistent or increasing PA.

Conclusions

The reviewed articles identified various PA subgroups, indicating that finite mixture modeling can yield new information on the complexity of PA behavior compared to studying population mean PA level only. The studies also provided novel information how different factors relate to changes in PA during life course. The recognition of the PA subgroups and their determinants is important for the more precise targeting of PA promotion and PA interventions.

Trial registration

PROSPERO registration number: CRD42018088120.
Appendix
Available only for authorised users
Literature
5.
go back to reference Hughes JP, McDowell MA, Brody DJ. Leisure-time physical activity among US adults 60 or more years of age: results from NHANES 1999–2004. J Phys Act Health. 2008;5:347–58.CrossRef Hughes JP, McDowell MA, Brody DJ. Leisure-time physical activity among US adults 60 or more years of age: results from NHANES 1999–2004. J Phys Act Health. 2008;5:347–58.CrossRef
7.
go back to reference Tammelin T, Näyhä S, Hills AP, Järvelin MR. Adolescent participation in sports and adult physical activity. Am J Prev Med. 2003;24:22–8.CrossRef Tammelin T, Näyhä S, Hills AP, Järvelin MR. Adolescent participation in sports and adult physical activity. Am J Prev Med. 2003;24:22–8.CrossRef
8.
go back to reference Telama R, Yang X, Jorma V, Välimäki I, Wanne O, Raitakari O. Physical activity from childhood to adulthood: a 21-year tracking study. Am J Prev Med. 2005;28:267–73.CrossRef Telama R, Yang X, Jorma V, Välimäki I, Wanne O, Raitakari O. Physical activity from childhood to adulthood: a 21-year tracking study. Am J Prev Med. 2005;28:267–73.CrossRef
9.
go back to reference Telama R. Tracking of physical activity from childhood to adulthood: a review. Obes Facts. 2009;2:187–95.CrossRef Telama R. Tracking of physical activity from childhood to adulthood: a review. Obes Facts. 2009;2:187–95.CrossRef
10.
go back to reference Malina RM. Tracking of physical activity and physical fitness across the lifespan. Res Q Exerc Sport. 1996;67(suppl 3):48–57. Malina RM. Tracking of physical activity and physical fitness across the lifespan. Res Q Exerc Sport. 1996;67(suppl 3):48–57.
11.
go back to reference Nagin DS. Group-based modeling of development. Cambridge, Mass.: Harvard University Press; 2005.CrossRef Nagin DS. Group-based modeling of development. Cambridge, Mass.: Harvard University Press; 2005.CrossRef
12.
go back to reference Muthén LK, Muthén BO. Mixture modeling with longitudinal data. In: Muthén LK, Muthen B, editors. Mplus user’s guide. 8th ed. Los Angeles, CA: Muthén & Muthén; 2017. p. 221–60. Muthén LK, Muthén BO. Mixture modeling with longitudinal data. In: Muthén LK, Muthen B, editors. Mplus user’s guide. 8th ed. Los Angeles, CA: Muthén & Muthén; 2017. p. 221–60.
15.
go back to reference Kern ML, Reynolds CA, Friedman HS. Predictors of physical activity patterns across adulthood: a growth curve analysis. Personal Soc Psychol Bull. 2010;36:1058–72.CrossRef Kern ML, Reynolds CA, Friedman HS. Predictors of physical activity patterns across adulthood: a growth curve analysis. Personal Soc Psychol Bull. 2010;36:1058–72.CrossRef
16.
go back to reference Duncan PC, Duncan TE, Strycker LA, Chaumeton NR. A cohort-sequential latent growth model of physical activity from ages 12-17 years. Ann Behav Med. 2007;33:80–9.CrossRef Duncan PC, Duncan TE, Strycker LA, Chaumeton NR. A cohort-sequential latent growth model of physical activity from ages 12-17 years. Ann Behav Med. 2007;33:80–9.CrossRef
17.
go back to reference Hampson SE, Andrews JA, Peterson M, Duncan SC. A cognitive – behavioral mechanism leading to adolescent obesity: children ’ s social images and physical activity. Ann Behav Med. 2007;34:287–94.CrossRef Hampson SE, Andrews JA, Peterson M, Duncan SC. A cognitive – behavioral mechanism leading to adolescent obesity: children ’ s social images and physical activity. Ann Behav Med. 2007;34:287–94.CrossRef
20.
go back to reference Warren JR, Luo L, Halpern-Manners A, Raymo JM, Palloni A. Do different methods for modeling age-graded trajectories yield consistent and valid results? Am J Sociol. 2017;120:1809–56.CrossRef Warren JR, Luo L, Halpern-Manners A, Raymo JM, Palloni A. Do different methods for modeling age-graded trajectories yield consistent and valid results? Am J Sociol. 2017;120:1809–56.CrossRef
21.
go back to reference Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRef Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6:e1000097.CrossRef
27.
go back to reference Kwon S, Janz KF, Letuchy EM, Burns TL, Levy SM. Active lifestyle in childhood and adolescence prevents obesity development in young adulthood. Obesity. 2015b;23:2462–9. Kwon S, Janz KF, Letuchy EM, Burns TL, Levy SM. Active lifestyle in childhood and adolescence prevents obesity development in young adulthood. Obesity. 2015b;23:2462–9.
28.
go back to reference Kwon S, Janz KF, Letuchy EM, Burns TL, Levy SM. Developmental trajectories of physical activity, sports, and television viewing during childhood to young adulthood: Iowa bone development study. JAMA Pediatr. 2015a;169:666–72. Kwon S, Janz KF, Letuchy EM, Burns TL, Levy SM. Developmental trajectories of physical activity, sports, and television viewing during childhood to young adulthood: Iowa bone development study. JAMA Pediatr. 2015a;169:666–72.
30.
go back to reference Audrain-Mcgovern J, Rodriguez D, Rodgers K, Cuevas J, Sass J. Longitudinal variation in adolescent physical activity patterns and the emergence of tobacco use. J Pediatr Psychol. 2012;37:622–33.CrossRef Audrain-Mcgovern J, Rodriguez D, Rodgers K, Cuevas J, Sass J. Longitudinal variation in adolescent physical activity patterns and the emergence of tobacco use. J Pediatr Psychol. 2012;37:622–33.CrossRef
31.
33.
go back to reference Aggio D, Papachristou E, Papacosta O, Lennon LT, Ash S, Whincup PH, et al. Trajectories of self-reported physical activity and predictors during the transition to old age: a 20-year cohort study of British men. Int J Behav Nutr Phys Act. 2018;15:1–12.CrossRef Aggio D, Papachristou E, Papacosta O, Lennon LT, Ash S, Whincup PH, et al. Trajectories of self-reported physical activity and predictors during the transition to old age: a 20-year cohort study of British men. Int J Behav Nutr Phys Act. 2018;15:1–12.CrossRef
34.
go back to reference Laddu DR, Cawthon PM, Parimi N, Hoffman AR, Orwoll E, Miljkovic I, et al. Trajectories of the relationships of physical activity with body composition changes in older men: the MrOS study. BMC Geriatr. 2017b;17:1–10. Laddu DR, Cawthon PM, Parimi N, Hoffman AR, Orwoll E, Miljkovic I, et al. Trajectories of the relationships of physical activity with body composition changes in older men: the MrOS study. BMC Geriatr. 2017b;17:1–10.
35.
go back to reference Nguyen HQ, Herting JR, Kohen R, Perry CK, LaCroix A, Adams-Campbell LL, et al. Recreational physical activity in postmenopausal women is stable over 8 years of follow-up. J Phys Act Health. 2013;10:656–68.CrossRef Nguyen HQ, Herting JR, Kohen R, Perry CK, LaCroix A, Adams-Campbell LL, et al. Recreational physical activity in postmenopausal women is stable over 8 years of follow-up. J Phys Act Health. 2013;10:656–68.CrossRef
39.
go back to reference Kwon S, Lee J, Carnethon MR. Developmental trajectories of physical activity and television viewing during adolescence among girls: National Growth and health cohort study. BMC Public Health. 2015;15:667.CrossRef Kwon S, Lee J, Carnethon MR. Developmental trajectories of physical activity and television viewing during adolescence among girls: National Growth and health cohort study. BMC Public Health. 2015;15:667.CrossRef
41.
go back to reference Dishman RK, Vandenberg RJ, Motl RW, Nigg CR. Using constructs of the transtheoretical model to predict classes of change in regular physical activity: a multi-ethnic longitudinal cohort study. Ann Behav Med. 2010;40:150–63.CrossRef Dishman RK, Vandenberg RJ, Motl RW, Nigg CR. Using constructs of the transtheoretical model to predict classes of change in regular physical activity: a multi-ethnic longitudinal cohort study. Ann Behav Med. 2010;40:150–63.CrossRef
42.
43.
go back to reference Kiviniemi AM, Perkiömäki N, Auvinen J, Herrala S, Hautala AJ, Ahola R, et al. Lifelong physical activity and cardiovascular autonomic function in midlife. Med Sci Sport Exerc. 2016;48:1506–13.CrossRef Kiviniemi AM, Perkiömäki N, Auvinen J, Herrala S, Hautala AJ, Ahola R, et al. Lifelong physical activity and cardiovascular autonomic function in midlife. Med Sci Sport Exerc. 2016;48:1506–13.CrossRef
45.
go back to reference Laddu DR, Rana JS, Murillo R, Sorel ME, Quesenberry CP, Allen NB, et al. 25-year physical activity trajectories and development of subclinical coronary artery disease as measured by coronary artery calcium. The coronary artery risk development in young adults (CARDIA) study. Mayo Clin Proc. 2017a;92:1660–70. https://doi.org/10.1016/j.mayocp.2017.07.016. Laddu DR, Rana JS, Murillo R, Sorel ME, Quesenberry CP, Allen NB, et al. 25-year physical activity trajectories and development of subclinical coronary artery disease as measured by coronary artery calcium. The coronary artery risk development in young adults (CARDIA) study. Mayo Clin Proc. 2017a;92:1660–70. https://​doi.​org/​10.​1016/​j.​mayocp.​2017.​07.​016.
46.
go back to reference Hsu HC, Luh DL, Chang WC, Pan LY. Joint trajectories of multiple health-related behaviors among the elderly. Int J Public Health. 2013;58:109–20.CrossRef Hsu HC, Luh DL, Chang WC, Pan LY. Joint trajectories of multiple health-related behaviors among the elderly. Int J Public Health. 2013;58:109–20.CrossRef
47.
48.
go back to reference Findlay LC, Garner RE, Kohen DE. Children’s organized physical activity patterns from childhood into adolescence. J Phys Act Health. 2009;6:708–15.CrossRef Findlay LC, Garner RE, Kohen DE. Children’s organized physical activity patterns from childhood into adolescence. J Phys Act Health. 2009;6:708–15.CrossRef
49.
go back to reference Howie EK, McVeigh JA, Smith AJ, Straker LM. Organized sport trajectories from childhood to adolescence and health associations. Med Sci Sports Exerc. 2016;48:1331–9.CrossRef Howie EK, McVeigh JA, Smith AJ, Straker LM. Organized sport trajectories from childhood to adolescence and health associations. Med Sci Sports Exerc. 2016;48:1331–9.CrossRef
55.
go back to reference Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34:350–5.CrossRef Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34:350–5.CrossRef
60.
go back to reference Hirvensalo M, Lintunen T. Life-course perspective for physical activity and sports participation. Eur Rev Aging Phys Act. 2011;8:13–22.CrossRef Hirvensalo M, Lintunen T. Life-course perspective for physical activity and sports participation. Eur Rev Aging Phys Act. 2011;8:13–22.CrossRef
61.
go back to reference Van Der Horst K, Paw MJCA, Twisk JWR, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39:1241–50.CrossRef Van Der Horst K, Paw MJCA, Twisk JWR, Van Mechelen W. A brief review on correlates of physical activity and sedentariness in youth. Med Sci Sports Exerc. 2007;39:1241–50.CrossRef
62.
go back to reference Stalsberg R, Pedersen A. Effects of socioeconomic status on the physical activity in adolescents: a systematic review of the evidence. Scand J Med Sci Sport. 2010;20:368–83.CrossRef Stalsberg R, Pedersen A. Effects of socioeconomic status on the physical activity in adolescents: a systematic review of the evidence. Scand J Med Sci Sport. 2010;20:368–83.CrossRef
63.
go back to reference Ferreira I, Van Der Horst K, Wendel-Vos W, Kremers S, Van Lenthe FJ, Brug J. Environmental correlates of physical activity in youth - a review and update. Obes Rev. 2007;8:129–54.CrossRef Ferreira I, Van Der Horst K, Wendel-Vos W, Kremers S, Van Lenthe FJ, Brug J. Environmental correlates of physical activity in youth - a review and update. Obes Rev. 2007;8:129–54.CrossRef
64.
go back to reference Hinkley T, Crawford D, Salmon J, Okely AD, Hesketh K. Preschool children and physical activity. A review of correlates. Am J Prev Med. 2008;34:435–41.CrossRef Hinkley T, Crawford D, Salmon J, Okely AD, Hesketh K. Preschool children and physical activity. A review of correlates. Am J Prev Med. 2008;34:435–41.CrossRef
65.
go back to reference Yao CA, Rhodes RE. Parental correlates in child and adolescent physical activity: a meta-analysis. Int J Behav Nutr Phys Act. 2015;12:10.CrossRef Yao CA, Rhodes RE. Parental correlates in child and adolescent physical activity: a meta-analysis. Int J Behav Nutr Phys Act. 2015;12:10.CrossRef
66.
go back to reference Van Hecke L, Loyen A, Verloigne M, van der Ploeg HP, Lakerveld J, Brug J, et al. Variation in population levels of physical activity in European children and adolescents according to cross-European studies: a systematic literature review within DEDIPAC. Int J Behav Nutr Phys Act. 2016;13. https://doi.org/10.1186/s12966-016-0396-4. Van Hecke L, Loyen A, Verloigne M, van der Ploeg HP, Lakerveld J, Brug J, et al. Variation in population levels of physical activity in European children and adolescents according to cross-European studies: a systematic literature review within DEDIPAC. Int J Behav Nutr Phys Act. 2016;13. https://​doi.​org/​10.​1186/​s12966-016-0396-4.
67.
go back to reference Borodulin K, Laatikainen T, Juolevi A, Jousilahti P. Thirty-year trends of physical activity in relation to age, calendar time and birth cohort in Finnish adults. Eur J Pub Health. 2008;18:339–44.CrossRef Borodulin K, Laatikainen T, Juolevi A, Jousilahti P. Thirty-year trends of physical activity in relation to age, calendar time and birth cohort in Finnish adults. Eur J Pub Health. 2008;18:339–44.CrossRef
71.
go back to reference Kaczynski A, Manske S, Mannell R, Grewal K. Smoking and physical activity: a systematic review. Am J Health Behav. 2008;32:93–110.CrossRef Kaczynski A, Manske S, Mannell R, Grewal K. Smoking and physical activity: a systematic review. Am J Health Behav. 2008;32:93–110.CrossRef
72.
go back to reference Swan JH, Brooks JM, Amini R, Moore AR, Turner KW. Smoking predicting physical activity in an aging America. J Nutr Heal Aging. 2017;22:476–82.CrossRef Swan JH, Brooks JM, Amini R, Moore AR, Turner KW. Smoking predicting physical activity in an aging America. J Nutr Heal Aging. 2017;22:476–82.CrossRef
73.
go back to reference Marshall SJ, Biddle SJH, Gorely T, Cameron N, Murdey I. Relationships between media use, body fatness and physical activity in children and youth: a meta-analysis. Int J Obes. 2004;28:1238–46.CrossRef Marshall SJ, Biddle SJH, Gorely T, Cameron N, Murdey I. Relationships between media use, body fatness and physical activity in children and youth: a meta-analysis. Int J Obes. 2004;28:1238–46.CrossRef
74.
go back to reference Pearson N, Braithwaite RE, Biddle SJH, van Sluijs EMF, Atkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis. Obes Rev. 2014;15:666–75.CrossRef Pearson N, Braithwaite RE, Biddle SJH, van Sluijs EMF, Atkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis. Obes Rev. 2014;15:666–75.CrossRef
75.
go back to reference Condello G, Puggina A, Aleksovska K, Buck C, Burns C, Cardon G, et al. Behavioral determinants of physical activity across the life course: a “DEterminants of DIet and physical ACtivity” (DEDIPAC) umbrella systematic literature review. Int J Behav Nutr Phys Act. 2017;14:58.CrossRef Condello G, Puggina A, Aleksovska K, Buck C, Burns C, Cardon G, et al. Behavioral determinants of physical activity across the life course: a “DEterminants of DIet and physical ACtivity” (DEDIPAC) umbrella systematic literature review. Int J Behav Nutr Phys Act. 2017;14:58.CrossRef
76.
go back to reference Nagin DS, Tremblay RE. Developmental trajectory groups: fact or a useful statistical fiction? Criminology. 2005;43:873–904.CrossRef Nagin DS, Tremblay RE. Developmental trajectory groups: fact or a useful statistical fiction? Criminology. 2005;43:873–904.CrossRef
77.
go back to reference Twisk J. Is it necessary to classify developmental trajectories over time? A critical note. Ann Nutr Metab. 2014;65:236–40.CrossRef Twisk J. Is it necessary to classify developmental trajectories over time? A critical note. Ann Nutr Metab. 2014;65:236–40.CrossRef
79.
go back to reference Steene-Johannessen J, Anderssen SA, Van Der Ploeg HP, Hendriksen IJM, Donnelly AE, Brage S, et al. Are self-report measures able to define individuals as physically active or inactive? Med Sci Sports Exerc. 2016;48:235–44.CrossRef Steene-Johannessen J, Anderssen SA, Van Der Ploeg HP, Hendriksen IJM, Donnelly AE, Brage S, et al. Are self-report measures able to define individuals as physically active or inactive? Med Sci Sports Exerc. 2016;48:235–44.CrossRef
Metadata
Title
Distinct trajectories of physical activity and related factors during the life course in the general population: a systematic review
Authors
Irinja Lounassalo
Kasper Salin
Anna Kankaanpää
Mirja Hirvensalo
Sanna Palomäki
Asko Tolvanen
Xiaolin Yang
Tuija H. Tammelin
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-6513-y

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue