Skip to main content
Top
Published in: BMC Public Health 1/2019

Open Access 01-12-2019 | Obesity | Research article

Examining validity of body mass index calculated using height and weight data from the US driver license

Authors: Alla Chernenko, Huong Meeks, Ken R. Smith

Published in: BMC Public Health | Issue 1/2019

Login to get access

Abstract

Background

Driver license departments in many US states collect data on individuals’ height and weight. These data can be useful to researchers in epidemiological and public health studies. As height and weight on driver license are self-reported, they may be prone to reporting bias. We compare height and weight obtained from driver license records and clinically measured height and weight, as well as body mass index (BMI) values calculated using the two data sources for the same individual.

Methods

We linked individual height and weight records obtained from the Driver License Division (DLD) in the Utah Department of Public Safety to clinical records from one of the largest healthcare providers in the state of Utah. We then calculated average differences between height, weight and BMI values separately for women and men in the sample, as well as discrepancies between the two sets of measures by age and BMI category. We examined how well self-reported height and weight from the driver licenses classify individuals into specific BMI categories based on clinical measures. Finally, we used two sets of BMI values to estimate individuals’ relative risk of type II diabetes.

Results

Individuals, on average, tend to overestimate their height and underestimate their weight. Consequently, the value of BMI calculated using driver license records is lower than BMI calculated using clinical measurements. The discrepancy varies by age and by BMI category. Despite the discrepancy, BMI based on self-reported height and weight allows for accurate categorization of individuals at the higher end of the BMI scale, such as the obese. When used as predictors of relative risk of type II diabetes, both sets of BMI values yield similar risk estimates.

Conclusions

Data on height and weight from driver license data can be a useful asset for monitoring population health in states where such information is collected, despite the degree of misreporting associated with self-report.
Literature
1.
go back to reference Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. Jama. 1999;282(16):1523–9.PubMedCrossRef Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. The disease burden associated with overweight and obesity. Jama. 1999;282(16):1523–9.PubMedCrossRef
2.
go back to reference Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. The continuing epidemics of obesity and diabetes in the United States. Jama. 2001;286(10):1195–200.PubMedCrossRef Mokdad AH, Bowman BA, Ford ES, Vinicor F, Marks JS, Koplan JP. The continuing epidemics of obesity and diabetes in the United States. Jama. 2001;286(10):1195–200.PubMedCrossRef
3.
go back to reference Pi-Sunyer FX. The obesity epidemic: pathophysiology and consequences of obesity. Obesity. 2002;10(S12). Pi-Sunyer FX. The obesity epidemic: pathophysiology and consequences of obesity. Obesity. 2002;10(S12).
4.
go back to reference Ali SM, Lindström M. Socioeconomic, psychosocial, behavioural, and psychological determinants of BMI among young women: differing patterns for underweight and overweight/obesity. Eur J Pub Health. 2006;16(3):324–30.CrossRef Ali SM, Lindström M. Socioeconomic, psychosocial, behavioural, and psychological determinants of BMI among young women: differing patterns for underweight and overweight/obesity. Eur J Pub Health. 2006;16(3):324–30.CrossRef
5.
go back to reference Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with underweight, overweight, and obesity. Jama. 2005;293(15):1861–7.PubMedCrossRef Flegal KM, Graubard BI, Williamson DF, Gail MH. Excess deaths associated with underweight, overweight, and obesity. Jama. 2005;293(15):1861–7.PubMedCrossRef
6.
go back to reference Hu FB. Overweight and obesity in women: health risks and consequences. J Women's Health. 2003;12(2):163–72.CrossRef Hu FB. Overweight and obesity in women: health risks and consequences. J Women's Health. 2003;12(2):163–72.CrossRef
7.
go back to reference Stommel M, Schoenborn CA. Variations in BMI and prevalence of health risks in diverse racial and ethnic populations. Obesity. 2010;18(9):1821–6.PubMedCrossRef Stommel M, Schoenborn CA. Variations in BMI and prevalence of health risks in diverse racial and ethnic populations. Obesity. 2010;18(9):1821–6.PubMedCrossRef
8.
go back to reference Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BW, Zitman FG. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry. 2010;67(3):220–9.PubMedCrossRef Luppino FS, de Wit LM, Bouvy PF, Stijnen T, Cuijpers P, Penninx BW, Zitman FG. Overweight, obesity, and depression: a systematic review and meta-analysis of longitudinal studies. Arch Gen Psychiatry. 2010;67(3):220–9.PubMedCrossRef
9.
go back to reference Katzmarzyk PT, Craig CL, Bouchard C. Original article underweight, overweight and obesity: relationships with mortality in the 13-year follow-up of the Canada fitness survey. J Clin Epidemiol. 2001;54(9):916–20.PubMedCrossRef Katzmarzyk PT, Craig CL, Bouchard C. Original article underweight, overweight and obesity: relationships with mortality in the 13-year follow-up of the Canada fitness survey. J Clin Epidemiol. 2001;54(9):916–20.PubMedCrossRef
10.
go back to reference Savva S, Tornaritis M, Savva M, Kourides Y, Panagi A, Silikiotou N, Georgiou C, Kafatos A. Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes. 2000;24(11):1453.CrossRef Savva S, Tornaritis M, Savva M, Kourides Y, Panagi A, Silikiotou N, Georgiou C, Kafatos A. Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes. 2000;24(11):1453.CrossRef
11.
go back to reference Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D. Limits of body mass index to detect obesity and predict body composition. Nutrition. 2001;17(1):26–30.PubMedCrossRef Frankenfield DC, Rowe WA, Cooney RN, Smith JS, Becker D. Limits of body mass index to detect obesity and predict body composition. Nutrition. 2001;17(1):26–30.PubMedCrossRef
12.
go back to reference Shah NR, Braverman ER. Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One. 2012;7(4):e33308.PubMedPubMedCentralCrossRef Shah NR, Braverman ER. Measuring adiposity in patients: the utility of body mass index (BMI), percent body fat, and leptin. PLoS One. 2012;7(4):e33308.PubMedPubMedCentralCrossRef
13.
go back to reference Ode JJ, Pivarnik JM, Reeves MJ, Knous JL. Body mass index as a predictor of percent fat in college athletes and nonathletes. Med Sci Sports Exerc. 2007;39(3):403–9.PubMedCrossRef Ode JJ, Pivarnik JM, Reeves MJ, Knous JL. Body mass index as a predictor of percent fat in college athletes and nonathletes. Med Sci Sports Exerc. 2007;39(3):403–9.PubMedCrossRef
14.
go back to reference Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell M, Korinek J, Allison TG, Batsis J, Sert-Kuniyoshi F, Lopez-Jimenez F. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes. 2008;32(6):959–66.CrossRef Romero-Corral A, Somers VK, Sierra-Johnson J, Thomas RJ, Collazo-Clavell M, Korinek J, Allison TG, Batsis J, Sert-Kuniyoshi F, Lopez-Jimenez F. Accuracy of body mass index in diagnosing obesity in the adult general population. Int J Obes. 2008;32(6):959–66.CrossRef
15.
go back to reference Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes. 2008;32:S56–9.CrossRef Rothman KJ. BMI-related errors in the measurement of obesity. Int J Obes. 2008;32:S56–9.CrossRef
16.
go back to reference Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13(3):275–86.PubMedCrossRef Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13(3):275–86.PubMedCrossRef
17.
go back to reference Dudeja V, Misra A, Pandey R, Devina G, Kumar G, Vikram N. BMI does not accurately predict overweight in Asian Indians in northern India. Br J Nutr. 2001;86(1):105–12.PubMedCrossRef Dudeja V, Misra A, Pandey R, Devina G, Kumar G, Vikram N. BMI does not accurately predict overweight in Asian Indians in northern India. Br J Nutr. 2001;86(1):105–12.PubMedCrossRef
18.
go back to reference Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2002;162(18):2074–9.PubMedCrossRef Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2002;162(18):2074–9.PubMedCrossRef
19.
go back to reference Kuczmarski MF, Kuczmarski RJ, Najjar M. Effects of age on validity of self-reported height, weight, and body mass index: findings from the third National Health and nutrition examination survey, 1988–1994. J Am Diet Assoc. 2001;101(1):28–34.PubMedCrossRef Kuczmarski MF, Kuczmarski RJ, Najjar M. Effects of age on validity of self-reported height, weight, and body mass index: findings from the third National Health and nutrition examination survey, 1988–1994. J Am Diet Assoc. 2001;101(1):28–34.PubMedCrossRef
20.
go back to reference Villanueva EV. The validity of self-reported weight in US adults: a population based cross-sectional study. BMC Public Health. 2001;1(1):1.CrossRef Villanueva EV. The validity of self-reported weight in US adults: a population based cross-sectional study. BMC Public Health. 2001;1(1):1.CrossRef
21.
go back to reference Huber LRB. Validity of self-reported height and weight in women of reproductive age. Matern Child Health J. 2007;11(2):137–44.CrossRef Huber LRB. Validity of self-reported height and weight in women of reproductive age. Matern Child Health J. 2007;11(2):137–44.CrossRef
22.
go back to reference Dekkers JC, van Wier MF, Hendriksen IJ, Twisk JW, van Mechelen W. Accuracy of self-reported body weight, height and waist circumference in a Dutch overweight working population. BMC Med Res Methodol. 2008;8(1):69.PubMedPubMedCentralCrossRef Dekkers JC, van Wier MF, Hendriksen IJ, Twisk JW, van Mechelen W. Accuracy of self-reported body weight, height and waist circumference in a Dutch overweight working population. BMC Med Res Methodol. 2008;8(1):69.PubMedPubMedCentralCrossRef
23.
go back to reference Stommel M, Schoenborn CA. Accuracy and usefulness of BMI measures based on self-reported weight and height: findings from the NHANES & NHIS 2001-2006. BMC Public Health. 2009;9(1):1.CrossRef Stommel M, Schoenborn CA. Accuracy and usefulness of BMI measures based on self-reported weight and height: findings from the NHANES & NHIS 2001-2006. BMC Public Health. 2009;9(1):1.CrossRef
24.
go back to reference Ng SP, Korda R, Clements M, Latz I, Bauman A, Bambrick H, Liu B, Rogers K, Herbert N, Banks E. Validity of self-reported height and weight and derived body mass index in middle-aged and elderly individuals in Australia. Aust N Z J Public Health. 2011;35(6):557–63.PubMedCrossRef Ng SP, Korda R, Clements M, Latz I, Bauman A, Bambrick H, Liu B, Rogers K, Herbert N, Banks E. Validity of self-reported height and weight and derived body mass index in middle-aged and elderly individuals in Australia. Aust N Z J Public Health. 2011;35(6):557–63.PubMedCrossRef
25.
go back to reference Vuksanović M, Safer A, Palm F, Stieglbauer G, Grau A, Becher H. Validity of self-reported BMI in older adults and an adjustment model. J Public Health. 2014;22(3):257–63.CrossRef Vuksanović M, Safer A, Palm F, Stieglbauer G, Grau A, Becher H. Validity of self-reported BMI in older adults and an adjustment model. J Public Health. 2014;22(3):257–63.CrossRef
26.
go back to reference Niedźwiedzka E, Długosz A, Wądołowska L. Validity of self-reported height and weight in elderly poles. Nutr Res Pract. 2015;9(3):319–27.PubMedCrossRef Niedźwiedzka E, Długosz A, Wądołowska L. Validity of self-reported height and weight in elderly poles. Nutr Res Pract. 2015;9(3):319–27.PubMedCrossRef
27.
go back to reference Gorber SC, Tremblay M, Moher D, Gorber B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: a systematic review. Obes Rev. 2007;8(4):307–26.PubMedCrossRef Gorber SC, Tremblay M, Moher D, Gorber B. A comparison of direct vs. self-report measures for assessing height, weight and body mass index: a systematic review. Obes Rev. 2007;8(4):307–26.PubMedCrossRef
28.
go back to reference Engstrom JL, Paterson SA, Doherty A, Trabulsi M, Speer KL. Accuracy of self-reported height and weight in women: an integrative review of the literature. J Midwifery Womens Health. 2003;48(5):338–45.PubMedCrossRef Engstrom JL, Paterson SA, Doherty A, Trabulsi M, Speer KL. Accuracy of self-reported height and weight in women: an integrative review of the literature. J Midwifery Womens Health. 2003;48(5):338–45.PubMedCrossRef
29.
go back to reference Craig BM, Adams AK. Accuracy of body mass index categories based on self-reported height and weight among women in the United States. Matern Child Health J. 2009;13(4):489–96.PubMedCrossRef Craig BM, Adams AK. Accuracy of body mass index categories based on self-reported height and weight among women in the United States. Matern Child Health J. 2009;13(4):489–96.PubMedCrossRef
30.
go back to reference Bolton-Smith C, Woodward M, Tunstall-Pedoe H, Morrison C. Accuracy of the estimated prevalence of obesity from self reported height and weight in an adult Scottish population. J Epidemiol Community Health. 2000;54(2):143–8.PubMedPubMedCentralCrossRef Bolton-Smith C, Woodward M, Tunstall-Pedoe H, Morrison C. Accuracy of the estimated prevalence of obesity from self reported height and weight in an adult Scottish population. J Epidemiol Community Health. 2000;54(2):143–8.PubMedPubMedCentralCrossRef
31.
go back to reference Niedhammer I, Bugel I, Bonenfant S, Goldberg M, Leclerc A. Validity of self-reported weight and height in the French GAZEL cohort. Int J Obes. 2000;24(9):1111.CrossRef Niedhammer I, Bugel I, Bonenfant S, Goldberg M, Leclerc A. Validity of self-reported weight and height in the French GAZEL cohort. Int J Obes. 2000;24(9):1111.CrossRef
32.
go back to reference Spencer EA, Appleby PN, Davey GK, Key TJ. Validity of self-reported height and weight in 4808 EPIC–Oxford participants. Public Health Nutr. 2002;5(4):561–5.PubMedCrossRef Spencer EA, Appleby PN, Davey GK, Key TJ. Validity of self-reported height and weight in 4808 EPIC–Oxford participants. Public Health Nutr. 2002;5(4):561–5.PubMedCrossRef
33.
go back to reference Wada K, Tamakoshi K, Tsunekawa T, Otsuka R, Zhang H, Murata C, Nagasawa N, Matsushita K, Sugiura K, Yatsuya H. Validity of self-reported height and weight in a Japanese workplace population. Int J Obes. 2005;29(9):1093.CrossRef Wada K, Tamakoshi K, Tsunekawa T, Otsuka R, Zhang H, Murata C, Nagasawa N, Matsushita K, Sugiura K, Yatsuya H. Validity of self-reported height and weight in a Japanese workplace population. Int J Obes. 2005;29(9):1093.CrossRef
34.
go back to reference Santillan A, Camargo C. Body mass index and asthma among Mexican adults: the effect of using self-reported vs measured weight and height. Int J Obes. 2003;27(11):1430.CrossRef Santillan A, Camargo C. Body mass index and asthma among Mexican adults: the effect of using self-reported vs measured weight and height. Int J Obes. 2003;27(11):1430.CrossRef
35.
go back to reference Shiely F, Perry IJ, Lutomski J, Harrington J, Kelleher CC, McGee H, Hayes K. Temporal trends in misclassification patterns of measured and self-report based body mass index categories-findings from three population surveys in Ireland. BMC Public Health. 2010;10(1):1.CrossRef Shiely F, Perry IJ, Lutomski J, Harrington J, Kelleher CC, McGee H, Hayes K. Temporal trends in misclassification patterns of measured and self-report based body mass index categories-findings from three population surveys in Ireland. BMC Public Health. 2010;10(1):1.CrossRef
36.
go back to reference Gillum RF, Sempos CT. Ethnic variation in validity of classification of overweight and obesity using self-reported weight and height in American women and men: the third National Health and nutrition examination survey. Nutr J. 2005;4(1):27.PubMedPubMedCentralCrossRef Gillum RF, Sempos CT. Ethnic variation in validity of classification of overweight and obesity using self-reported weight and height in American women and men: the third National Health and nutrition examination survey. Nutr J. 2005;4(1):27.PubMedPubMedCentralCrossRef
37.
go back to reference Paeratakul S, White MA, Williamson DA, Ryan DH, Bray GA. Sex, race/ethnicity, socioeconomic status, and BMI in relation to self-perception of overweight. Obesity. 2002;10(5):345–50.CrossRef Paeratakul S, White MA, Williamson DA, Ryan DH, Bray GA. Sex, race/ethnicity, socioeconomic status, and BMI in relation to self-perception of overweight. Obesity. 2002;10(5):345–50.CrossRef
38.
go back to reference McCabe RE, McFarlane T, Polivy J, Olmsted MP. Eating disorders, dieting, and the accuracy of self-reported weight. Int J Eat Disord. 2001;29(1):59–64.PubMedCrossRef McCabe RE, McFarlane T, Polivy J, Olmsted MP. Eating disorders, dieting, and the accuracy of self-reported weight. Int J Eat Disord. 2001;29(1):59–64.PubMedCrossRef
39.
go back to reference Keith SW, Fontaine KR, Pajewski NM, Mehta T, Allison DB. Use of self-reported height and weight biases the body mass index–mortality association. Int J Obes. 2011;35(3):401–8.CrossRef Keith SW, Fontaine KR, Pajewski NM, Mehta T, Allison DB. Use of self-reported height and weight biases the body mass index–mortality association. Int J Obes. 2011;35(3):401–8.CrossRef
40.
go back to reference Xie YJ, Ho SC, Liu ZM, Hui SS-C. Comparisons of measured and self-reported anthropometric variables and blood pressure in a sample of Hong Kong female nurses. PLoS One. 2014;9(9):e107233.PubMedPubMedCentralCrossRef Xie YJ, Ho SC, Liu ZM, Hui SS-C. Comparisons of measured and self-reported anthropometric variables and blood pressure in a sample of Hong Kong female nurses. PLoS One. 2014;9(9):e107233.PubMedPubMedCentralCrossRef
41.
go back to reference Flegal KM, Kit BK, Graubard BI. Bias in hazard ratios arising from misclassification by self-reported weight and height in observational studies of body mass index and mortality. Am J Epidemiol. 2017. Flegal KM, Kit BK, Graubard BI. Bias in hazard ratios arising from misclassification by self-reported weight and height in observational studies of body mass index and mortality. Am J Epidemiol. 2017.
42.
go back to reference Dutton DJ, McLaren L. The usefulness of “corrected” body mass index vs. self-reported body mass index: comparing the population distributions, sensitivity, specificity, and predictive utility of three correction equations using Canadian population-based data. BMC Public Health. 2014;14(1):1.CrossRef Dutton DJ, McLaren L. The usefulness of “corrected” body mass index vs. self-reported body mass index: comparing the population distributions, sensitivity, specificity, and predictive utility of three correction equations using Canadian population-based data. BMC Public Health. 2014;14(1):1.CrossRef
43.
go back to reference Walsh MC, Trentham-Dietz A, Palta M. Availability of driver's license master lists for use in government-sponsored public health research. Am J Epidemiol. 2011;173(12):1414–8.PubMedPubMedCentralCrossRef Walsh MC, Trentham-Dietz A, Palta M. Availability of driver's license master lists for use in government-sponsored public health research. Am J Epidemiol. 2011;173(12):1414–8.PubMedPubMedCentralCrossRef
44.
go back to reference Littenberg B, Lubetkin D. Availability, Strengths and Limitations of US state Driver’s license data for obesity research. Cureus. 2016;8(3). Littenberg B, Lubetkin D. Availability, Strengths and Limitations of US state Driver’s license data for obesity research. Cureus. 2016;8(3).
45.
go back to reference Ossiander EM, Emanuel I, O’Brien W, Malone K. Driver’s licenses as a source of data on height and weight. Econ Hum Biol. 2004;2(2):219–27.PubMedCrossRef Ossiander EM, Emanuel I, O’Brien W, Malone K. Driver’s licenses as a source of data on height and weight. Econ Hum Biol. 2004;2(2):219–27.PubMedCrossRef
46.
go back to reference Willey P, Falsetti T. Inaccuracy of height information on driver's licenses. J Forensic Sci. 1991;36(3):813–9.PubMedCrossRef Willey P, Falsetti T. Inaccuracy of height information on driver's licenses. J Forensic Sci. 1991;36(3):813–9.PubMedCrossRef
47.
go back to reference Morris DS, Schubert SS, Ngo DL, Rubado DJ, Main E, Douglas JP. Using state-issued identification cards for obesity tracking. Obes Res Clin Pract. 2015;9(1):87–91.PubMedCrossRef Morris DS, Schubert SS, Ngo DL, Rubado DJ, Main E, Douglas JP. Using state-issued identification cards for obesity tracking. Obes Res Clin Pract. 2015;9(1):87–91.PubMedCrossRef
Metadata
Title
Examining validity of body mass index calculated using height and weight data from the US driver license
Authors
Alla Chernenko
Huong Meeks
Ken R. Smith
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2019
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-019-6391-3

Other articles of this Issue 1/2019

BMC Public Health 1/2019 Go to the issue