Skip to main content
Top
Published in: BMC Public Health 1/2018

Open Access 01-12-2018 | Research article

Exploiting routinely collected severe case data to monitor and predict influenza outbreaks

Authors: Alice Corbella, Xu-Sheng Zhang, Paul J. Birrell, Nicki Boddington, Richard G. Pebody, Anne M. Presanis, Daniela De Angelis

Published in: BMC Public Health | Issue 1/2018

Login to get access

Abstract

Background

Influenza remains a significant burden on health systems. Effective responses rely on the timely understanding of the magnitude and the evolution of an outbreak. For monitoring purposes, data on severe cases of influenza in England are reported weekly to Public Health England. These data are both readily available and have the potential to provide valuable information to estimate and predict the key transmission features of seasonal and pandemic influenza.

Methods

We propose an epidemic model that links the underlying unobserved influenza transmission process to data on severe influenza cases. Within a Bayesian framework, we infer retrospectively the parameters of the epidemic model for each seasonal outbreak from 2012 to 2015, including: the effective reproduction number; the initial susceptibility; the probability of admission to intensive care given infection; and the effect of school closure on transmission. The model is also implemented in real time to assess whether early forecasting of the number of admissions to intensive care is possible.

Results

Our model of admissions data allows reconstruction of the underlying transmission dynamics revealing: increased transmission during the season 2013/14 and a noticeable effect of the Christmas school holiday on disease spread during seasons 2012/13 and 2014/15. When information on the initial immunity of the population is available, forecasts of the number of admissions to intensive care can be substantially improved.

Conclusion

Readily available severe case data can be effectively used to estimate epidemiological characteristics and to predict the evolution of an epidemic, crucially allowing real-time monitoring of the transmission and severity of the outbreak.
Appendix
Available only for authorised users
Literature
2.
go back to reference Pitman RJ, Melegaro A, Gelb D, Siddiqui MR, Gay NJ, Edmunds WJ. Assessing the burden of influenza and other respiratory infections in England and Wales. J Infect. 2007; 54(6):530–8.CrossRefPubMed Pitman RJ, Melegaro A, Gelb D, Siddiqui MR, Gay NJ, Edmunds WJ. Assessing the burden of influenza and other respiratory infections in England and Wales. J Infect. 2007; 54(6):530–8.CrossRefPubMed
3.
go back to reference Hayward AC, Fragaszy EB, Bermingham A, Wang L, Copas A, Edmunds WJ, et al.Comparative community burden and severity of seasonal and pandemic influenza: Results of the Flu Watch cohort study. Lancet Respir Med. 2014; 2(6):445–54.CrossRefPubMed Hayward AC, Fragaszy EB, Bermingham A, Wang L, Copas A, Edmunds WJ, et al.Comparative community burden and severity of seasonal and pandemic influenza: Results of the Flu Watch cohort study. Lancet Respir Med. 2014; 2(6):445–54.CrossRefPubMed
4.
go back to reference Matias G, Taylor R, Haguinet F, Schuck-Paim C, Lustig R, Shinde V. Estimates of mortality attributable to influenza and RSV in the United States during 1997–2009 by influenza type or subtype, age, cause of death, and risk status. Influenza Other Respir Viruses. 2014; 8(5):507–15.CrossRefPubMedPubMedCentral Matias G, Taylor R, Haguinet F, Schuck-Paim C, Lustig R, Shinde V. Estimates of mortality attributable to influenza and RSV in the United States during 1997–2009 by influenza type or subtype, age, cause of death, and risk status. Influenza Other Respir Viruses. 2014; 8(5):507–15.CrossRefPubMedPubMedCentral
5.
go back to reference Neuzil KM, Wright PF, Mitchel EF, Griffin MR. The burden of influenza illness in children with asthma and other chronic medical conditions. J Pediatr. 2000; 137(6):856–64.CrossRefPubMed Neuzil KM, Wright PF, Mitchel EF, Griffin MR. The burden of influenza illness in children with asthma and other chronic medical conditions. J Pediatr. 2000; 137(6):856–64.CrossRefPubMed
6.
go back to reference Zhao H, Harris R, Ellis J, Pebody R. Ethnicity, deprivation and mortality due to 2009 pandemic influenza A (H1N1) in England during the 2009/2010 pandemic and the first post-pandemic season. Epidemiol Infect. 2015; 143(16):3375–83.CrossRefPubMed Zhao H, Harris R, Ellis J, Pebody R. Ethnicity, deprivation and mortality due to 2009 pandemic influenza A (H1N1) in England during the 2009/2010 pandemic and the first post-pandemic season. Epidemiol Infect. 2015; 143(16):3375–83.CrossRefPubMed
7.
go back to reference Van Kerkhove MD, Asikainen T, Becker NG, Bjorge S, Desenclos Jc, Santos T, et al.Studies Needed to Address Public Health Challenges of the 2009 H1N1 Influenza Pandemic : Insights from Modeling. PLoS Med. 2010; 7(6):1–6.CrossRef Van Kerkhove MD, Asikainen T, Becker NG, Bjorge S, Desenclos Jc, Santos T, et al.Studies Needed to Address Public Health Challenges of the 2009 H1N1 Influenza Pandemic : Insights from Modeling. PLoS Med. 2010; 7(6):1–6.CrossRef
8.
go back to reference Baguelin M, Flasche S, Camacho A, Demiris N, Miller E, Edmunds WJ. Assessing Optimal Target Populations for Influenza Vaccination Programmes: An Evidence Synthesis and Modelling Study. PLoS Med. 2013; 10(10):1–19.CrossRef Baguelin M, Flasche S, Camacho A, Demiris N, Miller E, Edmunds WJ. Assessing Optimal Target Populations for Influenza Vaccination Programmes: An Evidence Synthesis and Modelling Study. PLoS Med. 2013; 10(10):1–19.CrossRef
9.
go back to reference House T, Baguelin M, Van Hoek AJ, White PJ, Sadique Z, Eames K, et al.Modelling the impact of local reactive school closures on critical care provision during an influenza pandemic. Proc Biol Sci. 2011; 278(1719):2753–60.CrossRefPubMedPubMedCentral House T, Baguelin M, Van Hoek AJ, White PJ, Sadique Z, Eames K, et al.Modelling the impact of local reactive school closures on critical care provision during an influenza pandemic. Proc Biol Sci. 2011; 278(1719):2753–60.CrossRefPubMedPubMedCentral
10.
go back to reference Te Beest DE, Birrell PJ, Wallinga J, De Angelis D, van Boven M. Joint modelling of serological and hospitalization data reveals that high levels of pre-existing immunity and school holidays shaped the influenza A pandemic of 2009 in the Netherlands. J R Soc Interface. 2015; 12(103):20141244.CrossRefPubMedPubMedCentral Te Beest DE, Birrell PJ, Wallinga J, De Angelis D, van Boven M. Joint modelling of serological and hospitalization data reveals that high levels of pre-existing immunity and school holidays shaped the influenza A pandemic of 2009 in the Netherlands. J R Soc Interface. 2015; 12(103):20141244.CrossRefPubMedPubMedCentral
11.
go back to reference Vynnycky E, Edmunds WJ. Analyses of the 1957 (Asian) influenza pandemic in the United Kingdom and the impact of school closures. Epidemiol Infect. 2008; 136(2):166–79.CrossRefPubMed Vynnycky E, Edmunds WJ. Analyses of the 1957 (Asian) influenza pandemic in the United Kingdom and the impact of school closures. Epidemiol Infect. 2008; 136(2):166–79.CrossRefPubMed
12.
go back to reference Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an influenza pandemic. Nature. 2006; 442(7101):448–52.CrossRefPubMed Ferguson NM, Cummings DAT, Fraser C, Cajka JC, Cooley PC, Burke DS. Strategies for mitigating an influenza pandemic. Nature. 2006; 442(7101):448–52.CrossRefPubMed
13.
go back to reference Birrell PJ, Ketsetzis G, Gay NJ, Cooper BS, Presanis AM, Harris RJ, et al.Bayesian modeling to unmask and predict influenza A/H1N1pdm dynamics in London. Proc Natl Acad Sci. 2011; 108(45):18238–43.CrossRefPubMedPubMedCentral Birrell PJ, Ketsetzis G, Gay NJ, Cooper BS, Presanis AM, Harris RJ, et al.Bayesian modeling to unmask and predict influenza A/H1N1pdm dynamics in London. Proc Natl Acad Sci. 2011; 108(45):18238–43.CrossRefPubMedPubMedCentral
14.
16.
go back to reference Shubin M, Lebedev A, Lyytikäinen O, Auranen K. Revealing the True Incidence of Pandemic A(H1N1)pdm09 Influenza in Finland during the First Two Seasons - An Analysis Based on a Dynamic Transmission Model. PLoS Comput Biol. 2016; 12(3):1–19.CrossRef Shubin M, Lebedev A, Lyytikäinen O, Auranen K. Revealing the True Incidence of Pandemic A(H1N1)pdm09 Influenza in Finland during the First Two Seasons - An Analysis Based on a Dynamic Transmission Model. PLoS Comput Biol. 2016; 12(3):1–19.CrossRef
23.
go back to reference Boddington NL, Verlander NQ, Pebody RG, the UK Severe Influenza Surveillance System Steering Group. Developing a system to estimate the severity of influenza infection in England: findings from a hospital-based surveillance system between 2010/2011 and 2014/2015. Epidemiol Infect. 2017; 145(7):1461–70.CrossRefPubMed Boddington NL, Verlander NQ, Pebody RG, the UK Severe Influenza Surveillance System Steering Group. Developing a system to estimate the severity of influenza infection in England: findings from a hospital-based surveillance system between 2010/2011 and 2014/2015. Epidemiol Infect. 2017; 145(7):1461–70.CrossRefPubMed
24.
go back to reference Tom BDM, van Hoek AJ, Pebody R, McMenamin J, Robertson C, Catchpole M, et al.Estimating time to onset of swine influenza symptoms after initial novel A(H1N1v) viral infection. Epidemiol Infect. 2011; 139(9):1418–24.CrossRefPubMed Tom BDM, van Hoek AJ, Pebody R, McMenamin J, Robertson C, Catchpole M, et al.Estimating time to onset of swine influenza symptoms after initial novel A(H1N1v) viral infection. Epidemiol Infect. 2011; 139(9):1418–24.CrossRefPubMed
25.
go back to reference Presanis AM, Pebody RG, Birrell PJ, Tom BDM, Green RK, Durnall H, et al.Synthesising evidence to estimate pandemic (2009) A/H1N1 influenza severity in 2009-2011. Ann Appl Stat. 2014; 8(4):2378–403.CrossRef Presanis AM, Pebody RG, Birrell PJ, Tom BDM, Green RK, Durnall H, et al.Synthesising evidence to estimate pandemic (2009) A/H1N1 influenza severity in 2009-2011. Ann Appl Stat. 2014; 8(4):2378–403.CrossRef
26.
go back to reference Keeling MJ, Rohani P. Modeling infectious diseases in humans and animals. Princeton New Jersey: Princeton University Press; 2008. Keeling MJ, Rohani P. Modeling infectious diseases in humans and animals. Princeton New Jersey: Princeton University Press; 2008.
27.
go back to reference Wearing HJ, Rohani P, Keeling MJ. Appropriate models for the management of infectious diseases. PLoS Med. 2005; 2(7):0621–7.CrossRef Wearing HJ, Rohani P, Keeling MJ. Appropriate models for the management of infectious diseases. PLoS Med. 2005; 2(7):0621–7.CrossRef
29.
go back to reference Hoschler K, Thompson C, Andrews N, Galiano M, Pebody R, Ellis J, et al.Seroprevalence of influenza A(H1N1) pdm09 virus antibody, England, 2010 and 2011. Emerg Infect Dis. 2012; 18(11):1894–7.CrossRefPubMedPubMedCentral Hoschler K, Thompson C, Andrews N, Galiano M, Pebody R, Ellis J, et al.Seroprevalence of influenza A(H1N1) pdm09 virus antibody, England, 2010 and 2011. Emerg Infect Dis. 2012; 18(11):1894–7.CrossRefPubMedPubMedCentral
30.
go back to reference Robert C, Casella G. Introducing Monte Carlo Methods with R. New York: Springer Science & Business Media; 2009. Robert C, Casella G. Introducing Monte Carlo Methods with R. New York: Springer Science & Business Media; 2009.
32.
go back to reference Soetaert K, Petzoldt T, Setzer RW. Solving differential equations in R: package deSolve. J Stat Softw. 2010; 33(9):33.CrossRef Soetaert K, Petzoldt T, Setzer RW. Solving differential equations in R: package deSolve. J Stat Softw. 2010; 33(9):33.CrossRef
34.
go back to reference Ong JBS, cheng Chen MI, Cook AR, Lee HC, Lee VJ, Lin RTP, et al.Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in singapore. PLoS One. 2010; 5(4):1–11.CrossRef Ong JBS, cheng Chen MI, Cook AR, Lee HC, Lee VJ, Lin RTP, et al.Real-time epidemic monitoring and forecasting of H1N1-2009 using influenza-like illness from general practice and family doctor clinics in singapore. PLoS One. 2010; 5(4):1–11.CrossRef
Metadata
Title
Exploiting routinely collected severe case data to monitor and predict influenza outbreaks
Authors
Alice Corbella
Xu-Sheng Zhang
Paul J. Birrell
Nicki Boddington
Richard G. Pebody
Anne M. Presanis
Daniela De Angelis
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2018
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-018-5671-7

Other articles of this Issue 1/2018

BMC Public Health 1/2018 Go to the issue