Skip to main content
Top
Published in: BMC Public Health 1/2018

Open Access 01-12-2018 | Research article

Long-term follow-up on biological risk factors, adiposity, and cardiorespiratory fitness development in a physical education intervention: a natural experiment (CHAMPS-study DK)

Authors: Jakob Tarp, Eva Jespersen, Niels Christian Møller, Heidi Klakk, Barbara Wessner, Niels Wedderkopp, Anna Bugge

Published in: BMC Public Health | Issue 1/2018

Login to get access

Abstract

Background

Schools are a key setting for large-scale primordial non-communicable disease prevention in young people, but little data on sustainability of impacts on cardiometabolic risk markers is available.

Methods

Six and a half year follow-up of a natural experiment. In 2008, six public schools in the municipality of Svendborg (Denmark) augmented their curricular physical education (intervention) and four matched schools served as controls. At long term follow up in 2015 n = 312 participants aged 5–11 years had complete data (33% of children providing necessary baseline data). The intervention, that consisted of a trebling of weekly physical education lessons and courses provided to physical education teachers, was provided at intervention schools up until 6th grade. Participants attended 6th to 10th grade at follow-up. Differences in the homeostasis model assessment of insulin resistance, blood pressure, triglycerides, cholesterol ratios, cardiorespiratory fitness, waist-circumference, and a composite score of these, between participants attending intervention and control schools were analysed by mixed linear regression models. Differences in physical activity at follow-up was analysed cross-sectionally (no baseline available) in n = 495.

Results

Compared to controls, children at intervention schools had a non-significant − 0.07 (− 0.32 to 0.18) standard deviations lower composite risk score 6.5 years after project initiation. Likewise, no statistically significant differences between intervention and control schools were found for any of the other outcomes (p-values ≥ 0.41). However, six of seven outcomes were in a direction favouring intervention schools. No statistically significant differences between intervention and control schools were observed for physical activity outcomes (p-values ≥ 0.13).

Conclusions

An augmented physical activity program including 270 min of weekly physical education provided for three to seven years did not materialize in statistically significant differences in established risk markers in children from intervention compared to control schools. As the intervention was discontinued after 6th grade, the post-intervention effect of augmented physical education throughout adolescence is unknown. School-based physical activity programs may benefit from incorporating instruments for behaviour translation to leisure time in their intervention models to increase the probability of achieving public health relevance.

Trial registration

ClinicalTrials.gov Identifier: NCT03510494.
Appendix
Available only for authorised users
Literature
1.
go back to reference Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa heart study. N Engl J Med. 1998;338:1650–6.CrossRefPubMed Berenson GS, Srinivasan SR, Bao W, Newman WP 3rd, Tracy RE, Wattigney WA. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. The Bogalusa heart study. N Engl J Med. 1998;338:1650–6.CrossRefPubMed
2.
go back to reference Morrison JA, Friedman LA, Gray-McGuire C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: the Princeton lipid research clinics follow-up study. Pediatrics. 2007;120:340–5.CrossRefPubMed Morrison JA, Friedman LA, Gray-McGuire C. Metabolic syndrome in childhood predicts adult cardiovascular disease 25 years later: the Princeton lipid research clinics follow-up study. Pediatrics. 2007;120:340–5.CrossRefPubMed
3.
go back to reference Ajala O, Mold F, Boughton C, Cooke D, Whyte M. Childhood predictors of cardiovascular disease in adulthood. A systematic review and meta-analysis. Obes Rev. 2017;18(9):1061–70.CrossRefPubMed Ajala O, Mold F, Boughton C, Cooke D, Whyte M. Childhood predictors of cardiovascular disease in adulthood. A systematic review and meta-analysis. Obes Rev. 2017;18(9):1061–70.CrossRefPubMed
4.
go back to reference Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362:485–93.CrossRefPubMedPubMedCentral Franks PW, Hanson RL, Knowler WC, Sievers ML, Bennett PH, Looker HC. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362:485–93.CrossRefPubMedPubMedCentral
5.
go back to reference Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380:219–29.CrossRefPubMedPubMedCentral Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380:219–29.CrossRefPubMedPubMedCentral
6.
go back to reference Expert Panel on Integrated Guidelines for Cardiovascular Health Risk Reduction in Children and Adolescents, National Heart Lung and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–56. Expert Panel on Integrated Guidelines for Cardiovascular Health Risk Reduction in Children and Adolescents, National Heart Lung and Blood Institute. Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report. Pediatrics. 2011;128(Suppl 5):S213–56.
7.
go back to reference Dalene KE, Anderssen SA, Andersen LB, Steene-Johannessen J, Ekelund U, Hansen BH, Kolle E. Secular and longitudinal physical activity changes in population-based samples of children and adolescents. Scand J Med Sci Sports. 2017. Dalene KE, Anderssen SA, Andersen LB, Steene-Johannessen J, Ekelund U, Hansen BH, Kolle E. Secular and longitudinal physical activity changes in population-based samples of children and adolescents. Scand J Med Sci Sports. 2017.
8.
go back to reference Tomkinson GR, Olds TS. Secular changes in pediatric aerobic fitness test performance: the global picture. Med Sport Sci. 2007;50:46–66.CrossRefPubMed Tomkinson GR, Olds TS. Secular changes in pediatric aerobic fitness test performance: the global picture. Med Sport Sci. 2007;50:46–66.CrossRefPubMed
9.
go back to reference Moller NC, Wedderkopp N, Kristensen PL, Andersen LB, Froberg K. Secular trends in cardiorespiratory fitness and body mass index in Danish children: the European youth heart study. Scand J Med Sci Sports. 2007;17:331–9.PubMed Moller NC, Wedderkopp N, Kristensen PL, Andersen LB, Froberg K. Secular trends in cardiorespiratory fitness and body mass index in Danish children: the European youth heart study. Scand J Med Sci Sports. 2007;17:331–9.PubMed
10.
go back to reference Telama R. Tracking of physical activity from childhood to adulthood: a review. Obes Facts. 2009;2:187–95.CrossRefPubMed Telama R. Tracking of physical activity from childhood to adulthood: a review. Obes Facts. 2009;2:187–95.CrossRefPubMed
11.
go back to reference NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.CrossRef NCD Risk Factor Collaboration. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42.CrossRef
13.
go back to reference Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17:95–107.CrossRefPubMed Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17:95–107.CrossRefPubMed
14.
go back to reference Rose G. Sick individuals and sick populations. Int J Epidemiol. 2001;30:427–32. discussion 433-424CrossRefPubMed Rose G. Sick individuals and sick populations. Int J Epidemiol. 2001;30:427–32. discussion 433-424CrossRefPubMed
16.
go back to reference Batis C, Rivera JA, Popkin BM, Taillie LS. First-year evaluation of Mexico’s tax on nonessential energy-dense foods: an observational study. PLoS Med. 2016;13:e1002057.CrossRefPubMedPubMedCentral Batis C, Rivera JA, Popkin BM, Taillie LS. First-year evaluation of Mexico’s tax on nonessential energy-dense foods: an observational study. PLoS Med. 2016;13:e1002057.CrossRefPubMedPubMedCentral
17.
go back to reference Moller N, Tarp J, Kamelarczyk E, Brond J, Klakk H, Wedderkopp N. Do extra compulsory physical education lessons mean more physically active children - findings from the childhood health, activity, and motor performance school study Denmark (the CHAMPS-study DK). Int J Behav Nutr Phys Act. 2014;11:121.CrossRefPubMedPubMedCentral Moller N, Tarp J, Kamelarczyk E, Brond J, Klakk H, Wedderkopp N. Do extra compulsory physical education lessons mean more physically active children - findings from the childhood health, activity, and motor performance school study Denmark (the CHAMPS-study DK). Int J Behav Nutr Phys Act. 2014;11:121.CrossRefPubMedPubMedCentral
18.
go back to reference Telford RM, Olive LS, Cochrane T, Davey R, Telford RD. Outcomes of a four-year specialist-taught physical education program on physical activity: a cluster randomized controlled trial, the LOOK study. Int J Behav Nutr Phys Act. 2016;13:64.CrossRefPubMedPubMedCentral Telford RM, Olive LS, Cochrane T, Davey R, Telford RD. Outcomes of a four-year specialist-taught physical education program on physical activity: a cluster randomized controlled trial, the LOOK study. Int J Behav Nutr Phys Act. 2016;13:64.CrossRefPubMedPubMedCentral
19.
go back to reference Hollis JL, Sutherland R, Williams AJ, Campbell E, Nathan N, Wolfenden L, Morgan PJ, Lubans DR, Gillham K, Wiggers J. A systematic review and meta-analysis of moderate-to-vigorous physical activity levels in secondary school physical education lessons. Int J Behav Nutr Phys Act. 2017;14:52.CrossRefPubMedPubMedCentral Hollis JL, Sutherland R, Williams AJ, Campbell E, Nathan N, Wolfenden L, Morgan PJ, Lubans DR, Gillham K, Wiggers J. A systematic review and meta-analysis of moderate-to-vigorous physical activity levels in secondary school physical education lessons. Int J Behav Nutr Phys Act. 2017;14:52.CrossRefPubMedPubMedCentral
20.
go back to reference Hollis JL, Williams AJ, Sutherland R, Campbell E, Nathan N, Wolfenden L, Morgan PJ, Lubans DR, Wiggers J. A systematic review and meta-analysis of moderate-to-vigorous physical activity levels in elementary school physical education lessons. Prev Med. 2016;86:34–54.CrossRefPubMed Hollis JL, Williams AJ, Sutherland R, Campbell E, Nathan N, Wolfenden L, Morgan PJ, Lubans DR, Wiggers J. A systematic review and meta-analysis of moderate-to-vigorous physical activity levels in elementary school physical education lessons. Prev Med. 2016;86:34–54.CrossRefPubMed
21.
go back to reference Cai L, Wu Y, Cheskin LJ, Wilson RF, Wang Y. Effect of childhood obesity prevention programmes on blood lipids: a systematic review and meta-analysis. Obes Rev. 2014;15:933–44.CrossRefPubMedPubMedCentral Cai L, Wu Y, Cheskin LJ, Wilson RF, Wang Y. Effect of childhood obesity prevention programmes on blood lipids: a systematic review and meta-analysis. Obes Rev. 2014;15:933–44.CrossRefPubMedPubMedCentral
22.
go back to reference Cai L, Wu Y, Wilson RF, Segal JB, Kim MT, Wang Y. Effect of childhood obesity prevention programs on blood pressure: a systematic review and meta-analysis. Circulation. 2014;129:1832–9.CrossRefPubMedPubMedCentral Cai L, Wu Y, Wilson RF, Segal JB, Kim MT, Wang Y. Effect of childhood obesity prevention programs on blood pressure: a systematic review and meta-analysis. Circulation. 2014;129:1832–9.CrossRefPubMedPubMedCentral
23.
go back to reference Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651. Dobbins M, Husson H, DeCorby K, LaRocca RL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651.
24.
go back to reference Klakk H, Andersen LB, Heidemann M, Moller NC, Wedderkopp N. Six physical education lessons a week can reduce cardiovascular risk in school children aged 6-13 years: a longitudinal study. Scand J Public Health. 2014;42:128–36.CrossRefPubMed Klakk H, Andersen LB, Heidemann M, Moller NC, Wedderkopp N. Six physical education lessons a week can reduce cardiovascular risk in school children aged 6-13 years: a longitudinal study. Scand J Public Health. 2014;42:128–36.CrossRefPubMed
25.
go back to reference Klakk H, Chinapaw M, Heidemann M, Andersen LB, Wedderkopp N. Effect of four additional physical education lessons on body composition in children aged 8-13 years--a prospective study during two school years. BMC Pediatr. 2013;13:170.CrossRefPubMedPubMedCentral Klakk H, Chinapaw M, Heidemann M, Andersen LB, Wedderkopp N. Effect of four additional physical education lessons on body composition in children aged 8-13 years--a prospective study during two school years. BMC Pediatr. 2013;13:170.CrossRefPubMedPubMedCentral
26.
go back to reference Craig P, Cooper C, Gunnell D, Haw S, Lawson K, Macintyre S, Ogilvie D, Petticrew M, Reeves B, Sutton M, Thompson S. Using natural experiments to evaluate population health interventions: new Medical Research Council guidance. J Epidemiol Community Health. 2012;66:1182–6.CrossRefPubMedPubMedCentral Craig P, Cooper C, Gunnell D, Haw S, Lawson K, Macintyre S, Ogilvie D, Petticrew M, Reeves B, Sutton M, Thompson S. Using natural experiments to evaluate population health interventions: new Medical Research Council guidance. J Epidemiol Community Health. 2012;66:1182–6.CrossRefPubMedPubMedCentral
27.
go back to reference Wedderkopp N, Jespersen E, Franz C, Klakk H, Heidemann M, Christiansen C, Moller NC, Leboeuf-Yde C. Study protocol. The childhood health, activity, and motor performance school study Denmark (the CHAMPS-study DK). BMC Pediatr. 2012;12:128.CrossRefPubMedPubMedCentral Wedderkopp N, Jespersen E, Franz C, Klakk H, Heidemann M, Christiansen C, Moller NC, Leboeuf-Yde C. Study protocol. The childhood health, activity, and motor performance school study Denmark (the CHAMPS-study DK). BMC Pediatr. 2012;12:128.CrossRefPubMedPubMedCentral
28.
go back to reference Klakk H. Body composition and cardiovascular health in school-aged children. PhD Thesis. University of Southern Denmark, Department of Sports Science and Clinical Biomechanics and University College Lillebælt; 2013. Klakk H. Body composition and cardiovascular health in school-aged children. PhD Thesis. University of Southern Denmark, Department of Sports Science and Clinical Biomechanics and University College Lillebælt; 2013.
29.
go back to reference Pryce R, Willeberg S, Falkentoft C, Meyhoff T. Aldersrelateret træning - Målrettet og forsvarlig træning af børn og unge. 1st ed. Copenhagen: Danmarks Idræts-Forbund. Team Danmark; 2005. Pryce R, Willeberg S, Falkentoft C, Meyhoff T. Aldersrelateret træning - Målrettet og forsvarlig træning af børn og unge. 1st ed. Copenhagen: Danmarks Idræts-Forbund. Team Danmark; 2005.
30.
go back to reference Ball GD, Huang TT, Gower BA, Cruz ML, Shaibi GQ, Weigensberg MJ, Goran MI. Longitudinal changes in insulin sensitivity, insulin secretion, and beta-cell function during puberty. J Pediatr. 2006;148:16–22.CrossRefPubMed Ball GD, Huang TT, Gower BA, Cruz ML, Shaibi GQ, Weigensberg MJ, Goran MI. Longitudinal changes in insulin sensitivity, insulin secretion, and beta-cell function during puberty. J Pediatr. 2006;148:16–22.CrossRefPubMed
31.
go back to reference Jeffery AN, Metcalf BS, Hosking J, Streeter AJ, Voss LD, Wilkin TJ. Age before stage: insulin resistance rises before the onset of puberty: a 9-year longitudinal study (EarlyBird 26). Diabetes Care. 2012;35:536–41.CrossRefPubMedPubMedCentral Jeffery AN, Metcalf BS, Hosking J, Streeter AJ, Voss LD, Wilkin TJ. Age before stage: insulin resistance rises before the onset of puberty: a 9-year longitudinal study (EarlyBird 26). Diabetes Care. 2012;35:536–41.CrossRefPubMedPubMedCentral
32.
go back to reference Ahler T, Bendiksen M, Krustrup P, Wedderkopp N. Aerobic fitness testing in 6- to 9-year-old children: reliability and validity of a modified Yo-Yo IR1 test and the Andersen test. Eur J Appl Physiol. 2012;112:871–6.CrossRefPubMed Ahler T, Bendiksen M, Krustrup P, Wedderkopp N. Aerobic fitness testing in 6- to 9-year-old children: reliability and validity of a modified Yo-Yo IR1 test and the Andersen test. Eur J Appl Physiol. 2012;112:871–6.CrossRefPubMed
33.
go back to reference Aadland E, Terum T, Mamen A, Andersen LB, Resaland GK. The Andersen aerobic fitness test: reliability and validity in 10-year-old children. PLoS One. 2014;9:e110492.CrossRefPubMedPubMedCentral Aadland E, Terum T, Mamen A, Andersen LB, Resaland GK. The Andersen aerobic fitness test: reliability and validity in 10-year-old children. PLoS One. 2014;9:e110492.CrossRefPubMedPubMedCentral
34.
go back to reference Tanner J. Growth at adolescence. 2th ed. Oxford: Blackwell Scientific Publications, and Springfield: Thomas; 1962. Tanner J. Growth at adolescence. 2th ed. Oxford: Blackwell Scientific Publications, and Springfield: Thomas; 1962.
35.
go back to reference Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, Anderssen SA. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (the European youth heart study). Lancet. 2006;368:299–304.CrossRefPubMed Andersen LB, Harro M, Sardinha LB, Froberg K, Ekelund U, Brage S, Anderssen SA. Physical activity and clustered cardiovascular risk in children: a cross-sectional study (the European youth heart study). Lancet. 2006;368:299–304.CrossRefPubMed
36.
go back to reference Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.CrossRefPubMed
37.
go back to reference Hjorth MF, Damsgaard CT, Michaelsen KF, Astrup A, Sjodin A. Markers of metabolic health in children differ between weekdays--the result of unhealthier weekend behavior. Obesity (Silver Spring). 2015;23:733–6.CrossRef Hjorth MF, Damsgaard CT, Michaelsen KF, Astrup A, Sjodin A. Markers of metabolic health in children differ between weekdays--the result of unhealthier weekend behavior. Obesity (Silver Spring). 2015;23:733–6.CrossRef
38.
go back to reference Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–3.CrossRefPubMedPubMedCentral Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–3.CrossRefPubMedPubMedCentral
39.
go back to reference Lawlor DA, Harro M, Wedderkopp N, Andersen LB, Sardinha LB, Riddoch CJ, Page AS, Anderssen SA, Froberg K, Stansbie D, Davey Smith G. Association of socioeconomic position with insulin resistance among children from Denmark, Estonia, and Portugal: cross sectional study. BMJ. 2005;331:183.CrossRefPubMedPubMedCentral Lawlor DA, Harro M, Wedderkopp N, Andersen LB, Sardinha LB, Riddoch CJ, Page AS, Anderssen SA, Froberg K, Stansbie D, Davey Smith G. Association of socioeconomic position with insulin resistance among children from Denmark, Estonia, and Portugal: cross sectional study. BMJ. 2005;331:183.CrossRefPubMedPubMedCentral
40.
go back to reference Resaland GK, Anderssen SA, Holme IM, Mamen A, Andersen LB. Effects of a 2-year school-based daily physical activity intervention on cardiovascular disease risk factors: the Sogndal school-intervention study. Scand J Med Sci Sports. 2011;21:e122–31.CrossRefPubMed Resaland GK, Anderssen SA, Holme IM, Mamen A, Andersen LB. Effects of a 2-year school-based daily physical activity intervention on cardiovascular disease risk factors: the Sogndal school-intervention study. Scand J Med Sci Sports. 2011;21:e122–31.CrossRefPubMed
41.
go back to reference Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, Brunner-La Rocca HP, van Mechelen W, Puder JJ. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340:c785.CrossRefPubMedPubMedCentral Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, Brunner-La Rocca HP, van Mechelen W, Puder JJ. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340:c785.CrossRefPubMedPubMedCentral
42.
go back to reference Bugge A, El-Naaman B, Dencker M, Froberg K, Holme IM, McMurray RG, Andersen LB. Effects of a three-year intervention: the Copenhagen school child intervention study. Med Sci Sports Exerc. 2012;44:1310–7.CrossRefPubMed Bugge A, El-Naaman B, Dencker M, Froberg K, Holme IM, McMurray RG, Andersen LB. Effects of a three-year intervention: the Copenhagen school child intervention study. Med Sci Sports Exerc. 2012;44:1310–7.CrossRefPubMed
43.
go back to reference Reed KE, Warburton DE, Macdonald HM, Naylor PJ, McKay HA. Action schools! BC: a school-based physical activity intervention designed to decrease cardiovascular disease risk factors in children. Prev Med. 2008;46:525–31.CrossRefPubMed Reed KE, Warburton DE, Macdonald HM, Naylor PJ, McKay HA. Action schools! BC: a school-based physical activity intervention designed to decrease cardiovascular disease risk factors in children. Prev Med. 2008;46:525–31.CrossRefPubMed
44.
go back to reference Telford RD, Cunningham RB, Telford RM, Daly RM, Olive LS, Abhayaratna WP. Physical education can improve insulin resistance: the LOOK randomized cluster trial. Med Sci Sports Exerc. 2013;45:1956–64.CrossRefPubMed Telford RD, Cunningham RB, Telford RM, Daly RM, Olive LS, Abhayaratna WP. Physical education can improve insulin resistance: the LOOK randomized cluster trial. Med Sci Sports Exerc. 2013;45:1956–64.CrossRefPubMed
45.
go back to reference Kriemler S, Meyer U, Martin E, van Sluijs EM, Andersen LB, Martin BW. Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update. Br J Sports Med. 2011;45:923–30.CrossRefPubMed Kriemler S, Meyer U, Martin E, van Sluijs EM, Andersen LB, Martin BW. Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update. Br J Sports Med. 2011;45:923–30.CrossRefPubMed
46.
go back to reference Gonzalez-Suarez C, Worley A, Grimmer-Somers K, Dones V. School-based interventions on childhood obesity: a meta-analysis. Am J Prev Med. 2009;37:418–27.CrossRefPubMed Gonzalez-Suarez C, Worley A, Grimmer-Somers K, Dones V. School-based interventions on childhood obesity: a meta-analysis. Am J Prev Med. 2009;37:418–27.CrossRefPubMed
47.
go back to reference Willi SM, Hirst K, Jago R, Buse J, Kaufman F, El Ghormli L, Bassin S, Elliot D, Hale DE, Group HS. Cardiovascular risk factors in multi-ethnic middle school students: the HEALTHY primary prevention trial. Pediatr Obes. 2012;7:230–9.CrossRefPubMedPubMedCentral Willi SM, Hirst K, Jago R, Buse J, Kaufman F, El Ghormli L, Bassin S, Elliot D, Hale DE, Group HS. Cardiovascular risk factors in multi-ethnic middle school students: the HEALTHY primary prevention trial. Pediatr Obes. 2012;7:230–9.CrossRefPubMedPubMedCentral
48.
go back to reference Hrafnkelsson H, Magnusson KT, Thorsdottir I, Johannsson E, Sigurdsson EL. Result of school-based intervention on cardiovascular risk factors. Scand J Prim Health Care. 2014;32:149–55.CrossRefPubMedPubMedCentral Hrafnkelsson H, Magnusson KT, Thorsdottir I, Johannsson E, Sigurdsson EL. Result of school-based intervention on cardiovascular risk factors. Scand J Prim Health Care. 2014;32:149–55.CrossRefPubMedPubMedCentral
49.
go back to reference Naylor PJ, Nettlefold L, Race D, Hoy C, Ashe MC, Wharf Higgins J, McKay HA. Implementation of school based physical activity interventions: a systematic review. Prev Med. 2015;72:95–115.CrossRefPubMed Naylor PJ, Nettlefold L, Race D, Hoy C, Ashe MC, Wharf Higgins J, McKay HA. Implementation of school based physical activity interventions: a systematic review. Prev Med. 2015;72:95–115.CrossRefPubMed
50.
go back to reference Kipping RR, Howe LD, Jago R, Campbell R, Wells S, Chittleborough CR, Mytton J, Noble SM, Peters TJ, Lawlor DA. Effect of intervention aimed at increasing physical activity, reducing sedentary behaviour, and increasing fruit and vegetable consumption in children: active for life year 5 (AFLY5) school based cluster randomised controlled trial. BMJ. 2014;348:g3256.CrossRefPubMedPubMedCentral Kipping RR, Howe LD, Jago R, Campbell R, Wells S, Chittleborough CR, Mytton J, Noble SM, Peters TJ, Lawlor DA. Effect of intervention aimed at increasing physical activity, reducing sedentary behaviour, and increasing fruit and vegetable consumption in children: active for life year 5 (AFLY5) school based cluster randomised controlled trial. BMJ. 2014;348:g3256.CrossRefPubMedPubMedCentral
51.
go back to reference Meyer U, Schindler C, Zahner L, Ernst D, Hebestreit H, van Mechelen W, Brunner-La Rocca HP, Probst-Hensch N, Puder JJ, Kriemler S. Long-term effect of a school-based physical activity program (KISS) on fitness and adiposity in children: a cluster-randomized controlled trial. PLoS One. 2014;9:e87929.CrossRefPubMedPubMedCentral Meyer U, Schindler C, Zahner L, Ernst D, Hebestreit H, van Mechelen W, Brunner-La Rocca HP, Probst-Hensch N, Puder JJ, Kriemler S. Long-term effect of a school-based physical activity program (KISS) on fitness and adiposity in children: a cluster-randomized controlled trial. PLoS One. 2014;9:e87929.CrossRefPubMedPubMedCentral
52.
go back to reference Kafatos I, Manios Y, Moschandreas J, Kafatos A, Preventive M. Nutrition clinic University of Crete Research T: health and nutrition education program in primary schools of Crete: changes in blood pressure over 10 years. Eur J Clin Nutr. 2007;61:837–45.CrossRefPubMed Kafatos I, Manios Y, Moschandreas J, Kafatos A, Preventive M. Nutrition clinic University of Crete Research T: health and nutrition education program in primary schools of Crete: changes in blood pressure over 10 years. Eur J Clin Nutr. 2007;61:837–45.CrossRefPubMed
53.
go back to reference Manios Y, Kafatos A, Preventive M. Nutrition clinic University of Crete Research T: health and nutrition education in primary schools in Crete: 10 years follow-up of serum lipids, physical activity and macronutrient intake. Br J Nutr. 2006;95:568–75.CrossRefPubMed Manios Y, Kafatos A, Preventive M. Nutrition clinic University of Crete Research T: health and nutrition education in primary schools in Crete: 10 years follow-up of serum lipids, physical activity and macronutrient intake. Br J Nutr. 2006;95:568–75.CrossRefPubMed
54.
go back to reference Burke V, Milligan RA, Thompson C, Taggart AC, Dunbar DL, Spencer MJ, Medland A, Gracey MP, Vandongen R, Beilin LJ. A controlled trial of health promotion programs in 11-year-olds using physical activity “enrichment” for higher risk children. J Pediatr. 1998;132:840–8.CrossRefPubMed Burke V, Milligan RA, Thompson C, Taggart AC, Dunbar DL, Spencer MJ, Medland A, Gracey MP, Vandongen R, Beilin LJ. A controlled trial of health promotion programs in 11-year-olds using physical activity “enrichment” for higher risk children. J Pediatr. 1998;132:840–8.CrossRefPubMed
55.
go back to reference Hardy ST, Loehr LR, Butler KR, Chakladar S, Chang PP, Folsom AR, Heiss G, MacLehose RF, Matsushita K, Avery CL. Reducing the blood pressure-related burden of cardiovascular disease: impact of achievable improvements in blood pressure prevention and control. J Am Heart Assoc. 2015;4:e002276.CrossRefPubMedPubMedCentral Hardy ST, Loehr LR, Butler KR, Chakladar S, Chang PP, Folsom AR, Heiss G, MacLehose RF, Matsushita K, Avery CL. Reducing the blood pressure-related burden of cardiovascular disease: impact of achievable improvements in blood pressure prevention and control. J Am Heart Assoc. 2015;4:e002276.CrossRefPubMedPubMedCentral
56.
go back to reference Dehmer SP, Maciosek MV, LaFrance AB, Flottemesch TJ. Health benefits and cost-effectiveness of asymptomatic screening for hypertension and high cholesterol and aspirin counseling for primary prevention. Ann Fam Med. 2017;15:23–36.CrossRefPubMedPubMedCentral Dehmer SP, Maciosek MV, LaFrance AB, Flottemesch TJ. Health benefits and cost-effectiveness of asymptomatic screening for hypertension and high cholesterol and aspirin counseling for primary prevention. Ann Fam Med. 2017;15:23–36.CrossRefPubMedPubMedCentral
57.
go back to reference GBD Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2017;390:1345–422.CrossRef GBD Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2016: a systematic analysis for the global burden of disease study 2016. Lancet. 2017;390:1345–422.CrossRef
58.
go back to reference Wang YC, Cheung AM, Bibbins-Domingo K, Prosser LA, Cook NR, Goldman L, Gillman MW. Effectiveness and cost-effectiveness of blood pressure screening in adolescents in the United States. J Pediatr. 2011;158:257–64. e251-257CrossRefPubMed Wang YC, Cheung AM, Bibbins-Domingo K, Prosser LA, Cook NR, Goldman L, Gillman MW. Effectiveness and cost-effectiveness of blood pressure screening in adolescents in the United States. J Pediatr. 2011;158:257–64. e251-257CrossRefPubMed
59.
go back to reference Oosterhoff M, Joore M, Ferreira I. The effects of school-based lifestyle interventions on body mass index and blood pressure: a multivariate multilevel meta-analysis of randomized controlled trials. Obes Rev. 2016;17:1131–53.CrossRefPubMed Oosterhoff M, Joore M, Ferreira I. The effects of school-based lifestyle interventions on body mass index and blood pressure: a multivariate multilevel meta-analysis of randomized controlled trials. Obes Rev. 2016;17:1131–53.CrossRefPubMed
60.
go back to reference Haapala HL, Hirvensalo MH, Kulmala J, Hakonen H, Kankaanpaa A, Laine K, Laakso L, Tammelin TH. Changes in physical activity and sedentary time in the Finnish schools on the move program: a quasi-experimental study. Scand J Med Sci Sports. 2017;27:1442–53.CrossRefPubMed Haapala HL, Hirvensalo MH, Kulmala J, Hakonen H, Kankaanpaa A, Laine K, Laakso L, Tammelin TH. Changes in physical activity and sedentary time in the Finnish schools on the move program: a quasi-experimental study. Scand J Med Sci Sports. 2017;27:1442–53.CrossRefPubMed
61.
go back to reference Hebert JJ, Klakk H, Moller NC, Grontved A, Andersen LB, Wedderkopp N. The prospective Association of Organized Sports Participation with Cardiovascular Disease Risk in children (the CHAMPS study-DK). Mayo Clin Proc. 2017;92:57–65.CrossRefPubMed Hebert JJ, Klakk H, Moller NC, Grontved A, Andersen LB, Wedderkopp N. The prospective Association of Organized Sports Participation with Cardiovascular Disease Risk in children (the CHAMPS study-DK). Mayo Clin Proc. 2017;92:57–65.CrossRefPubMed
62.
go back to reference Wang Y, Cai L, Wu Y, Wilson RF, Weston C, Fawole O, Bleich SN, Cheskin LJ, Showell NN, Lau BD, et al. What childhood obesity prevention programmes work? A systematic review and meta-analysis. Obes Rev. 2015;16:547–65.CrossRefPubMedPubMedCentral Wang Y, Cai L, Wu Y, Wilson RF, Weston C, Fawole O, Bleich SN, Cheskin LJ, Showell NN, Lau BD, et al. What childhood obesity prevention programmes work? A systematic review and meta-analysis. Obes Rev. 2015;16:547–65.CrossRefPubMedPubMedCentral
63.
go back to reference Brown HE, Corder K, Atkin AJ, van Sluijs EM. Childhood predictors of adolescent behaviour: the prospective association of familial factors with meeting physical activity guidelines. Prev Med Rep. 2017;6:221–7.CrossRefPubMedPubMedCentral Brown HE, Corder K, Atkin AJ, van Sluijs EM. Childhood predictors of adolescent behaviour: the prospective association of familial factors with meeting physical activity guidelines. Prev Med Rep. 2017;6:221–7.CrossRefPubMedPubMedCentral
64.
go back to reference Muellmann S, Steenbock B, De Cocker K, De Craemer M, Hayes C, O'Shea MP, Horodyska K, Bell J, Luszczynska A, Roos G, et al. Views of policy makers and health promotion professionals on factors facilitating implementation and maintenance of interventions and policies promoting physical activity and healthy eating: results of the DEDIPAC project. BMC Public Health. 2017;17:932.CrossRefPubMedPubMedCentral Muellmann S, Steenbock B, De Cocker K, De Craemer M, Hayes C, O'Shea MP, Horodyska K, Bell J, Luszczynska A, Roos G, et al. Views of policy makers and health promotion professionals on factors facilitating implementation and maintenance of interventions and policies promoting physical activity and healthy eating: results of the DEDIPAC project. BMC Public Health. 2017;17:932.CrossRefPubMedPubMedCentral
65.
go back to reference Borde R, Smith JJ, Sutherland R, Nathan N, Lubans DR. Methodological considerations and impact of school-based interventions on objectively measured physical activity in adolescents: a systematic review and meta-analysis. Obes Rev. 2017;18:476–90.CrossRefPubMed Borde R, Smith JJ, Sutherland R, Nathan N, Lubans DR. Methodological considerations and impact of school-based interventions on objectively measured physical activity in adolescents: a systematic review and meta-analysis. Obes Rev. 2017;18:476–90.CrossRefPubMed
66.
go back to reference Metcalf B, Henley W, Wilkin T. Effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). BMJ (Online). 2012;345:1–11. Metcalf B, Henley W, Wilkin T. Effectiveness of intervention on physical activity of children: systematic review and meta-analysis of controlled trials with objectively measured outcomes (EarlyBird 54). BMJ (Online). 2012;345:1–11.
67.
go back to reference Sims J, Scarborough P, Foster C. The effectiveness of interventions on sustained childhood physical activity: a systematic review and meta-analysis of controlled studies. PLoS One. 2015;10:e0132935.CrossRefPubMedPubMedCentral Sims J, Scarborough P, Foster C. The effectiveness of interventions on sustained childhood physical activity: a systematic review and meta-analysis of controlled studies. PLoS One. 2015;10:e0132935.CrossRefPubMedPubMedCentral
68.
go back to reference Mears R, Jago R. Effectiveness of after-school interventions at increasing moderate-to-vigorous physical activity levels in 5- to 18-year olds: a systematic review and meta-analysis. Br J Sports Med. 2016;50(21):1315–24.CrossRef Mears R, Jago R. Effectiveness of after-school interventions at increasing moderate-to-vigorous physical activity levels in 5- to 18-year olds: a systematic review and meta-analysis. Br J Sports Med. 2016;50(21):1315–24.CrossRef
69.
go back to reference Glymour MM, Weuve J, Berkman LF, Kawachi I, Robins JM. When is baseline adjustment useful in analyses of change? An example with education and cognitive change. Am J Epidemiol. 2005;162:267–78.CrossRefPubMed Glymour MM, Weuve J, Berkman LF, Kawachi I, Robins JM. When is baseline adjustment useful in analyses of change? An example with education and cognitive change. Am J Epidemiol. 2005;162:267–78.CrossRefPubMed
Metadata
Title
Long-term follow-up on biological risk factors, adiposity, and cardiorespiratory fitness development in a physical education intervention: a natural experiment (CHAMPS-study DK)
Authors
Jakob Tarp
Eva Jespersen
Niels Christian Møller
Heidi Klakk
Barbara Wessner
Niels Wedderkopp
Anna Bugge
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2018
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-018-5524-4

Other articles of this Issue 1/2018

BMC Public Health 1/2018 Go to the issue