Skip to main content
Top
Published in: BMC Public Health 1/2017

Open Access 01-12-2017 | Technical advance

A novel integrative procedure for identifying and integrating three-dimensions of objectively measured free-living sedentary behaviour

Authors: Anna Myers, Catherine Gibbons, Edward Butler, Michelle Dalton, Nicola Buckland, John Blundell, Graham Finlayson

Published in: BMC Public Health | Issue 1/2017

Login to get access

Abstract

Background

The widely accepted definition of sedentary behaviour [SB] refers to any waking behaviour characterized by an energy expenditure ≤1.5 metabolic equivalents [METs] while in a sitting or reclining posture. At present, there is no single field-based device which objectively measures sleep, posture and activity intensity simultaneously. The aim of this study was to develop a novel integrative procedure [INT] to combine information from two validated activity monitors on sleep, activity intensity and posture, the three key dimensions of SB.

Methods

Participants in this analysis were initially recruited from a series of three studies conducted between December 2014 and June 2016 at the University of Leeds. Sixty-three female participants aged 37.1 (13.6) years with a body mass index of 29.6 (4.7) kg/m2 were continuously monitored for 5–7 days with the SenseWear Armband [SWA] (sleep and activity intensity) and the activPAL [AP] (posture). Data from both activity monitors were analysed separately and integrated resulting in three measures of sedentary time. Differences in Sedentary time between the three measurement methods were assessed as well as how well the three measures correlated.

Results

The three measures of sedentary time were positively correlated, with the weakest relationship between SEDSWA (awake and <1.5 METs) and SEDAP (awake and sitting/lying posture) [r(61) = .37,p = .003], followed by SEDSWA and SEDINT (awake, <1.5 METs and sitting/lying posture) [r(61) = .58,p < .001], and the strongest relationship was between SEDAP and SEDINT [r(61) = .91,p < .001]. There was a significant difference between the three measures of sedentary time [F(1.18,73.15) = 104.70,p < .001]. Post-hoc tests revealed all three methods differed significantly from each other [p < .001]. SEDSWA resulted in the most sedentary time 11.74 (1.60) hours/day, followed by SEDAP 10.16 (1.75) hours/day, and SEDINT 9.10 (1.67) hours/day. Weekday and weekend day sedentary time did not differ for any of the measurement methods [p = .04–.25].

Conclusion

Information from two validated activity monitors was combined to obtain an objective measure of free-living SB based on posture and activity intensity during waking hours. The amount of sedentary time accumulated varied according to the definition of SB and its measurement. The novel data integration and processing procedures presented in this paper represents an opportunity to investigate whether different components of SB are differentially related to health end points.
Literature
1.
go back to reference Owen N, Salmon J, Koohsari MJ, Turrell G, Giles-Corti B. Sedentary behaviour and health: mapping environmental and social contexts to underpin chronic disease prevention. Br J Sports Med. 2014;48:174–7.CrossRefPubMed Owen N, Salmon J, Koohsari MJ, Turrell G, Giles-Corti B. Sedentary behaviour and health: mapping environmental and social contexts to underpin chronic disease prevention. Br J Sports Med. 2014;48:174–7.CrossRefPubMed
2.
go back to reference Henson J, Yates T, Biddle SJ, Edwardson CL, Khunti K, Wilmot EG, Gray LJ, Gorely T, Nimmo MA, Davies MJ. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia. 2013;56:1012–20.CrossRefPubMed Henson J, Yates T, Biddle SJ, Edwardson CL, Khunti K, Wilmot EG, Gray LJ, Gorely T, Nimmo MA, Davies MJ. Associations of objectively measured sedentary behaviour and physical activity with markers of cardiometabolic health. Diabetologia. 2013;56:1012–20.CrossRefPubMed
3.
go back to reference Jefferis BJ, Sartini C, Shiroma E, Whincup PH, Wannamethee SG, Lee I-M. Duration and breaks in sedentary behaviour: accelerometer data from 1566 community-dwelling older men (British regional heart study). Br J Sports Med. 2015;49:1591–4.CrossRefPubMed Jefferis BJ, Sartini C, Shiroma E, Whincup PH, Wannamethee SG, Lee I-M. Duration and breaks in sedentary behaviour: accelerometer data from 1566 community-dwelling older men (British regional heart study). Br J Sports Med. 2015;49:1591–4.CrossRefPubMed
4.
go back to reference Edwardson CL, Gorely T, Davies MJ, Gray LJ, Khunti K, Wilmot EG, Yates T, Biddle SJ. Association of sedentary behaviour with metabolic syndrome: a meta-analysis. PLoS One. 2012;7:e34916.CrossRefPubMedPubMedCentral Edwardson CL, Gorely T, Davies MJ, Gray LJ, Khunti K, Wilmot EG, Yates T, Biddle SJ. Association of sedentary behaviour with metabolic syndrome: a meta-analysis. PLoS One. 2012;7:e34916.CrossRefPubMedPubMedCentral
5.
go back to reference Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, Alter DA. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162:123–32.CrossRefPubMed Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, Alter DA. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162:123–32.CrossRefPubMed
6.
go back to reference Biddle S, Cavill N, Ekelund U, Gorely T, Griffiths M, Jago R, Oppert J, Raats M, Salmon J, Stratton G. Sedentary behaviour and obesity: review of the current scientific evidence. United Kingdom-Department of Health: Department for Children SaF; 2010. Biddle S, Cavill N, Ekelund U, Gorely T, Griffiths M, Jago R, Oppert J, Raats M, Salmon J, Stratton G. Sedentary behaviour and obesity: review of the current scientific evidence. United Kingdom-Department of Health: Department for Children SaF; 2010.
7.
go back to reference Network SBR. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–2.CrossRef Network SBR. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37:540–2.CrossRef
8.
go back to reference Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, Chastin SF, Altenburg TM, Chinapaw MJ. Sedentary behavior research network (SBRN)–terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14:75.CrossRefPubMedPubMedCentral Tremblay MS, Aubert S, Barnes JD, Saunders TJ, Carson V, Latimer-Cheung AE, Chastin SF, Altenburg TM, Chinapaw MJ. Sedentary behavior research network (SBRN)–terminology consensus project process and outcome. Int J Behav Nutr Phys Act. 2017;14:75.CrossRefPubMedPubMedCentral
9.
go back to reference Dunstan D, Salmon J, Owen N, Armstrong T, Zimmet P, Welborn T, Cameron A, Dwyer T, Jolley D, Shaw J. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia. 2005;48:2254–61.CrossRefPubMed Dunstan D, Salmon J, Owen N, Armstrong T, Zimmet P, Welborn T, Cameron A, Dwyer T, Jolley D, Shaw J. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia. 2005;48:2254–61.CrossRefPubMed
10.
go back to reference Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, Salmon J, Marshall SJ, Biddle SJ. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol. 2012;41:1460–71.CrossRefPubMedPubMedCentral Atkin AJ, Gorely T, Clemes SA, Yates T, Edwardson C, Brage S, Salmon J, Marshall SJ, Biddle SJ. Methods of measurement in epidemiology: sedentary behaviour. Int J Epidemiol. 2012;41:1460–71.CrossRefPubMedPubMedCentral
11.
12.
go back to reference Gore SA, Foster JA, VG DL, Kirk K, Smith West D. Television viewing and snacking. Eat Behav. 2003;4:399–405.CrossRefPubMed Gore SA, Foster JA, VG DL, Kirk K, Smith West D. Television viewing and snacking. Eat Behav. 2003;4:399–405.CrossRefPubMed
13.
go back to reference Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, Owen N. Objectively measured sedentary time, physical activity, and metabolic risk the Australian diabetes, obesity and lifestyle study (AusDiab). Diabetes Care. 2008;31:369–71.CrossRefPubMed Healy GN, Wijndaele K, Dunstan DW, Shaw JE, Salmon J, Zimmet PZ, Owen N. Objectively measured sedentary time, physical activity, and metabolic risk the Australian diabetes, obesity and lifestyle study (AusDiab). Diabetes Care. 2008;31:369–71.CrossRefPubMed
14.
go back to reference Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time beneficial associations with metabolic risk. Diabetes Care. 2008;31:661–6.CrossRefPubMed Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, Owen N. Breaks in sedentary time beneficial associations with metabolic risk. Diabetes Care. 2008;31:661–6.CrossRefPubMed
15.
go back to reference Young DR, Hivert M-F, Alhassan S, Camhi SM, Ferguson JF, Katzmarzyk PT, Lewis CE, Owen N, Perry CK, Siddique J. Sedentary behavior and cardiovascular morbidity and mortality. Circulation. 2016;134:e262–79.CrossRefPubMed Young DR, Hivert M-F, Alhassan S, Camhi SM, Ferguson JF, Katzmarzyk PT, Lewis CE, Owen N, Perry CK, Siddique J. Sedentary behavior and cardiovascular morbidity and mortality. Circulation. 2016;134:e262–79.CrossRefPubMed
17.
go back to reference Scheers T, Philippaerts R, Lefevre J. SenseWear-determined physical activity and sedentary behavior and metabolic syndrome. Med Sci Sports Exerc. 2013;45:481–9.CrossRefPubMed Scheers T, Philippaerts R, Lefevre J. SenseWear-determined physical activity and sedentary behavior and metabolic syndrome. Med Sci Sports Exerc. 2013;45:481–9.CrossRefPubMed
18.
go back to reference Gibbs BB, King WC, Davis KK, Rickman AD, Rogers RJ, Wahed A, Belle SH, Jakicic J. Objective vs. self-report sedentary behavior in overweight and obese young adults. J Phys Act Health. 2015;12:1551–7.CrossRefPubMedCentral Gibbs BB, King WC, Davis KK, Rickman AD, Rogers RJ, Wahed A, Belle SH, Jakicic J. Objective vs. self-report sedentary behavior in overweight and obese young adults. J Phys Act Health. 2015;12:1551–7.CrossRefPubMedCentral
19.
go back to reference Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43:1561–7.CrossRefPubMed Kozey-Keadle S, Libertine A, Lyden K, Staudenmayer J, Freedson PS. Validation of wearable monitors for assessing sedentary behavior. Med Sci Sports Exerc. 2011;43:1561–7.CrossRefPubMed
20.
go back to reference Kozey-Keadle S, Libertine A, Staudenmayer J, Freedson P. The feasibility of reducing and measuring sedentary time among overweight, non-exercising office workers. J Obes. 2012;2012 Kozey-Keadle S, Libertine A, Staudenmayer J, Freedson P. The feasibility of reducing and measuring sedentary time among overweight, non-exercising office workers. J Obes. 2012;2012
21.
go back to reference Kim Y, Barry VW, Kang M. Validation of the ActiGraph GT3X and activPAL accelerometers for the assessment of sedentary behavior. Meas Phys Educ Exerc Sci. 2015;19:125–37.CrossRef Kim Y, Barry VW, Kang M. Validation of the ActiGraph GT3X and activPAL accelerometers for the assessment of sedentary behavior. Meas Phys Educ Exerc Sci. 2015;19:125–37.CrossRef
22.
go back to reference Calabró MA, Lee J-M, Saint-Maurice PF, Yoo H, Welk GJ. Validity of physical activity monitors for assessing lower intensity activity in adults. Int J Behav Nutr Phys Act. 2014;11:119–28.CrossRefPubMedPubMedCentral Calabró MA, Lee J-M, Saint-Maurice PF, Yoo H, Welk GJ. Validity of physical activity monitors for assessing lower intensity activity in adults. Int J Behav Nutr Phys Act. 2014;11:119–28.CrossRefPubMedPubMedCentral
23.
go back to reference Berntsen S, Hageberg R, Aandstad A, Mowinckel P, Anderssen SA, Carlsen K, Andersen LB. Validity of physical activity monitors in adults participating in free-living activities. Br J Sports Med. 2010;44:657–64.CrossRefPubMed Berntsen S, Hageberg R, Aandstad A, Mowinckel P, Anderssen SA, Carlsen K, Andersen LB. Validity of physical activity monitors in adults participating in free-living activities. Br J Sports Med. 2010;44:657–64.CrossRefPubMed
24.
go back to reference Levine JA, Schleusner SJ, Jensen MD. Energy expenditure of nonexercise activity. Am J Clin Nutr. 2000;72:1451–4.PubMed Levine JA, Schleusner SJ, Jensen MD. Energy expenditure of nonexercise activity. Am J Clin Nutr. 2000;72:1451–4.PubMed
25.
go back to reference Mansoubi M, Pearson N, Clemes SA, Biddle SJ, Bodicoat DH, Tolfrey K, Edwardson CL, Yates T. Energy expenditure during common sitting and standing tasks: examining the 1.5 MET definition of sedentary behaviour. BMC Public Health. 2015;15:1.CrossRef Mansoubi M, Pearson N, Clemes SA, Biddle SJ, Bodicoat DH, Tolfrey K, Edwardson CL, Yates T. Energy expenditure during common sitting and standing tasks: examining the 1.5 MET definition of sedentary behaviour. BMC Public Health. 2015;15:1.CrossRef
26.
go back to reference Kim Y, Welk GJ. Criterion validity of competing accelerometry-based activity monitoring devices. Med Sci Sports Exerc. 2015;47:2456–63.CrossRefPubMed Kim Y, Welk GJ. Criterion validity of competing accelerometry-based activity monitoring devices. Med Sci Sports Exerc. 2015;47:2456–63.CrossRefPubMed
27.
go back to reference Ellingson LD, Schwabacher IJ, Kim Y, Welk GJ, Cook DB. Validity of an integrative method for processing physical activity data. Med Sci Sports Exerc. 2016;48:1629–38.CrossRefPubMed Ellingson LD, Schwabacher IJ, Kim Y, Welk GJ, Cook DB. Validity of an integrative method for processing physical activity data. Med Sci Sports Exerc. 2016;48:1629–38.CrossRefPubMed
28.
go back to reference Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;2011(43):1575–81.CrossRef Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR Jr, Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. Compendium of physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;2011(43):1575–81.CrossRef
29.
go back to reference Pate RR, O'Neill JR, Lobelo F. The evolving definition of" sedentary". Exerc Sport Sci Rev. 2008;36:173–8.CrossRefPubMed Pate RR, O'Neill JR, Lobelo F. The evolving definition of" sedentary". Exerc Sport Sci Rev. 2008;36:173–8.CrossRefPubMed
30.
go back to reference Lyden K, Kozey-Keadle SL, Staudenmayer JW, Freedson PS. Validity of two wearable monitors to estimate breaks from sedentary time. Med Sci Sports Exerc. 2012;44:2243.CrossRefPubMedPubMedCentral Lyden K, Kozey-Keadle SL, Staudenmayer JW, Freedson PS. Validity of two wearable monitors to estimate breaks from sedentary time. Med Sci Sports Exerc. 2012;44:2243.CrossRefPubMedPubMedCentral
31.
go back to reference Gibbs BB, Hergenroeder AL, Katzmarzyk PT, Lee I-M, Jakicic JM. Definition, measurement, and health risks associated with sedentary behavior. Med Sci Sports Exerc. 2015;47:1295–300.CrossRefPubMedPubMedCentral Gibbs BB, Hergenroeder AL, Katzmarzyk PT, Lee I-M, Jakicic JM. Definition, measurement, and health risks associated with sedentary behavior. Med Sci Sports Exerc. 2015;47:1295–300.CrossRefPubMedPubMedCentral
32.
go back to reference Smith L, Thomas EL, Bell JD, Hamer M. The association between objectively measured sitting and standing with body composition: a pilot study using MRI. BMJ Open. 2014;4:e005476.CrossRefPubMedPubMedCentral Smith L, Thomas EL, Bell JD, Hamer M. The association between objectively measured sitting and standing with body composition: a pilot study using MRI. BMJ Open. 2014;4:e005476.CrossRefPubMedPubMedCentral
33.
go back to reference Varela-Mato V, Yates T, Stensel DJ, Biddle SJ, Clemes SA. Time spent sitting during and outside working hours in bus drivers: a pilot study. Prev Med Rep. 2016;3:36–9.CrossRefPubMed Varela-Mato V, Yates T, Stensel DJ, Biddle SJ, Clemes SA. Time spent sitting during and outside working hours in bus drivers: a pilot study. Prev Med Rep. 2016;3:36–9.CrossRefPubMed
34.
go back to reference Stamatakis E, Davis M, Stathi A, Hamer M. Associations between multiple indicators of objectively-measured and self-reported sedentary behaviour and cardiometabolic risk in older adults. Prev Med. 2012;54:82–7.CrossRefPubMed Stamatakis E, Davis M, Stathi A, Hamer M. Associations between multiple indicators of objectively-measured and self-reported sedentary behaviour and cardiometabolic risk in older adults. Prev Med. 2012;54:82–7.CrossRefPubMed
35.
go back to reference Byrom B, Stratton G, Mc Carthy M, Muehlhausen W. Objective measurement of sedentary behaviour using accelerometers. Int J Obes. 2016;40:1809–12.CrossRef Byrom B, Stratton G, Mc Carthy M, Muehlhausen W. Objective measurement of sedentary behaviour using accelerometers. Int J Obes. 2016;40:1809–12.CrossRef
Metadata
Title
A novel integrative procedure for identifying and integrating three-dimensions of objectively measured free-living sedentary behaviour
Authors
Anna Myers
Catherine Gibbons
Edward Butler
Michelle Dalton
Nicola Buckland
John Blundell
Graham Finlayson
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2017
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-017-4994-0

Other articles of this Issue 1/2017

BMC Public Health 1/2017 Go to the issue