Skip to main content
Top
Published in: BMC Public Health 1/2018

Open Access 01-12-2018 | Research article

Objectively measured physical activity patterns, sedentary time and parent-reported screen-time across the day in four-year-old Swedish children

Authors: Daniel Berglind, Per Tynelius

Published in: BMC Public Health | Issue 1/2018

Login to get access

Abstract

Background

Physical activity (PA) improves health outcomes accumulating evidence suggests that sedentary time (ST), especially parent-reported screen-time, is associated with negative health outcomes in children. The aim of the present study is to describe levels and patterns of PA and ST across the day and week and activity pattern differences between the sexes, across all weekdays and time spent in and outside the preschool in four-year old children.

Methods

In total 899 four-year old Swedish children who had both complete questionnaire data on screen-time behaviors and objective activity variables and at least 4 days, including one weekend day, with more than 10 h of GT3X+ Actigraph accelerometer wear time data were included in the study. Patterns of PA and ST across the day and week and differences between sexes, weekdays vs. weekend days and time in preschool vs. time spent outside preschool were assessed.

Results

Children engaged in 150 min (SD 73) and 102 min (SD 60) of screen-time on weekend days and weekdays, with 97% and 86% of children exceeding the 1 h guideline for screen-time on weekend days and weekdays, respectively. Accelerometer data showed that boys are more active and less sedentary compared with girls and both sexes were more active and less sedentary on weekdays compared with weekend days, while parent-reported data showed that boys engage in more screen-time compared with girls. Children accumulated 24.8 min (SD. 19) MVPA during preschool time and 26.6 min (SD. 16) outside preschool hours on weekdays, compared with 22.4 min (SD. 18) MVPA during preschool time and 25.3 min (SD. 22) outside preschool hours on weekend days.

Conclusions

Four-year old Swedish children display different activity patterns across the day on weekdays compared to weekend days, with preschool hours during weekdays being the most active segments and preschool hours during weekend days being the least active segments of the day.
Appendix
Available only for authorised users
Literature
1.
go back to reference Collaborators GBDRF, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;386(10010):2287–323.CrossRef Collaborators GBDRF, Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the global burden of disease study 2013. Lancet. 2015;386(10010):2287–323.CrossRef
2.
go back to reference Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98.CrossRefPubMedPubMedCentral Tremblay MS, LeBlanc AG, Kho ME, Saunders TJ, Larouche R, Colley RC, et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth. Int J Behav Nutr Phys Act. 2011;8:98.CrossRefPubMedPubMedCentral
3.
go back to reference Timmons BW, Leblanc AG, Carson V, Connor Gorber S, Dillman C, Janssen I, et al. Systematic review of physical activity and health in the early years (aged 0-4 years). Appl Physiol Nutr Metab. 2012;37(4):773–92.CrossRefPubMed Timmons BW, Leblanc AG, Carson V, Connor Gorber S, Dillman C, Janssen I, et al. Systematic review of physical activity and health in the early years (aged 0-4 years). Appl Physiol Nutr Metab. 2012;37(4):773–92.CrossRefPubMed
4.
go back to reference Cooper AR, Goodman A, Page AS, Sherar LB, Esliger DW, van Sluijs EM, et al. Objectively measured physical activity and sedentary time in youth: the international children's accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015;12:113.CrossRefPubMedPubMedCentral Cooper AR, Goodman A, Page AS, Sherar LB, Esliger DW, van Sluijs EM, et al. Objectively measured physical activity and sedentary time in youth: the international children's accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015;12:113.CrossRefPubMedPubMedCentral
5.
go back to reference Kwon S, Burns TL, Levy SM, Janz KF. Breaks in sedentary time during childhood and adolescence: Iowa bone development study. Med Sci Sports Exerc. 2012;44(6):1075–80.CrossRefPubMedPubMedCentral Kwon S, Burns TL, Levy SM, Janz KF. Breaks in sedentary time during childhood and adolescence: Iowa bone development study. Med Sci Sports Exerc. 2012;44(6):1075–80.CrossRefPubMedPubMedCentral
6.
go back to reference Jones RA, Hinkley T, Okely AD, Salmon J. Tracking physical activity and sedentary behavior in childhood: a systematic review. Am J Prev Med. 2013;44(6):651–8.CrossRefPubMed Jones RA, Hinkley T, Okely AD, Salmon J. Tracking physical activity and sedentary behavior in childhood: a systematic review. Am J Prev Med. 2013;44(6):651–8.CrossRefPubMed
7.
go back to reference Cliff DP, Okely AD, Burrows TL, Jones RA, Morgan PJ, Collins CE, et al. Objectively measured sedentary behavior, physical activity, and plasma lipids in overweight and obese children. Obesity (Silver Spring). 2013;21(2):382–5.CrossRef Cliff DP, Okely AD, Burrows TL, Jones RA, Morgan PJ, Collins CE, et al. Objectively measured sedentary behavior, physical activity, and plasma lipids in overweight and obese children. Obesity (Silver Spring). 2013;21(2):382–5.CrossRef
8.
go back to reference Sardinha LB, Andersen LB, Anderssen SA, Quiterio AL, Ornelas R, Froberg K, et al. Objectively measured time spent sedentary is associated with insulin resistance independent of overall and central body fat in 9- to 10-year-old Portuguese children. Diabetes Care. 2008;31(3):569–75.CrossRefPubMed Sardinha LB, Andersen LB, Anderssen SA, Quiterio AL, Ornelas R, Froberg K, et al. Objectively measured time spent sedentary is associated with insulin resistance independent of overall and central body fat in 9- to 10-year-old Portuguese children. Diabetes Care. 2008;31(3):569–75.CrossRefPubMed
9.
go back to reference Saunders TJ, Chaput JP, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):53–61.CrossRefPubMed Saunders TJ, Chaput JP, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):53–61.CrossRefPubMed
10.
go back to reference Carson V, Janssen I. Volume, patterns, and types of sedentary behavior and cardio-metabolic health in children and adolescents: a cross-sectional study. BMC Public Health. 2011;11:274.CrossRefPubMedPubMedCentral Carson V, Janssen I. Volume, patterns, and types of sedentary behavior and cardio-metabolic health in children and adolescents: a cross-sectional study. BMC Public Health. 2011;11:274.CrossRefPubMedPubMedCentral
11.
go back to reference Colley RC, Garriguet D, Janssen I, Wong SL, Saunders TJ, Carson V, et al. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian health measures survey. BMC Public Health. 2013;13:200.CrossRefPubMedPubMedCentral Colley RC, Garriguet D, Janssen I, Wong SL, Saunders TJ, Carson V, et al. The association between accelerometer-measured patterns of sedentary time and health risk in children and youth: results from the Canadian health measures survey. BMC Public Health. 2013;13:200.CrossRefPubMedPubMedCentral
12.
go back to reference LeBlanc AG, Spence JC, Carson V, Connor Gorber S, Dillman C, Janssen I, et al. Systematic review of sedentary behaviour and health indicators in the early years (aged 0-4 years). Appl Physiol Nutr Metab. 2012;37(4):753–72.CrossRefPubMed LeBlanc AG, Spence JC, Carson V, Connor Gorber S, Dillman C, Janssen I, et al. Systematic review of sedentary behaviour and health indicators in the early years (aged 0-4 years). Appl Physiol Nutr Metab. 2012;37(4):753–72.CrossRefPubMed
13.
go back to reference Tremblay MS, Leblanc AG, Carson V, Choquette L, Connor Gorber S, Dillman C, et al. Canadian sedentary behaviour guidelines for the early years (aged 0-4 years). Appl Physiol Nutr Metab. 2012;37(2):370–91.CrossRefPubMed Tremblay MS, Leblanc AG, Carson V, Choquette L, Connor Gorber S, Dillman C, et al. Canadian sedentary behaviour guidelines for the early years (aged 0-4 years). Appl Physiol Nutr Metab. 2012;37(2):370–91.CrossRefPubMed
14.
go back to reference Hesketh KR, McMinn AM, Ekelund U, Sharp SJ, Collings PJ, Harvey NC, et al. Objectively measured physical activity in four-year-old British children: a cross-sectional analysis of activity patterns segmented across the day. Int J Behav Nutr Phys Act. 2014;11:1.CrossRefPubMedPubMedCentral Hesketh KR, McMinn AM, Ekelund U, Sharp SJ, Collings PJ, Harvey NC, et al. Objectively measured physical activity in four-year-old British children: a cross-sectional analysis of activity patterns segmented across the day. Int J Behav Nutr Phys Act. 2014;11:1.CrossRefPubMedPubMedCentral
15.
go back to reference Doring N, Hansson LM, Andersson ES, Bohman B, Westin M, Magnusson M, et al. Primary prevention of childhood obesity through counselling sessions at Swedish child health centres: design, methods and baseline sample characteristics of the PRIMROSE cluster-randomised trial. BMC Public Health. 2014;14:335.CrossRefPubMedPubMedCentral Doring N, Hansson LM, Andersson ES, Bohman B, Westin M, Magnusson M, et al. Primary prevention of childhood obesity through counselling sessions at Swedish child health centres: design, methods and baseline sample characteristics of the PRIMROSE cluster-randomised trial. BMC Public Health. 2014;14:335.CrossRefPubMedPubMedCentral
17.
go back to reference Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240–3.CrossRefPubMedPubMedCentral Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320(7244):1240–3.CrossRefPubMedPubMedCentral
18.
go back to reference Gasser TGD, Molinari L. Kernel estimation, shape-invariant modelling and structural analysis, in methods in human growth research. Cambridge: Cambridge University Press; 2004. p. 179–204. Gasser TGD, Molinari L. Kernel estimation, shape-invariant modelling and structural analysis, in methods in human growth research. Cambridge: Cambridge University Press; 2004. p. 179–204.
19.
go back to reference Santos-Lozano A, Marin PJ, Torres-Luque G, Ruiz JR, Lucia A, Garatachea N. Technical variability of the GT3X accelerometer. Med Eng Phys. 2012;34(6):787–90.CrossRefPubMed Santos-Lozano A, Marin PJ, Torres-Luque G, Ruiz JR, Lucia A, Garatachea N. Technical variability of the GT3X accelerometer. Med Eng Phys. 2012;34(6):787–90.CrossRefPubMed
20.
go back to reference Costa S, Barber SE, Cameron N, Clemes SA. Calibration and validation of the ActiGraph GT3X+ in 2-3 year olds. J Sci Med Sport. 2014;17(6):617–22.CrossRefPubMed Costa S, Barber SE, Cameron N, Clemes SA. Calibration and validation of the ActiGraph GT3X+ in 2-3 year olds. J Sci Med Sport. 2014;17(6):617–22.CrossRefPubMed
21.
go back to reference Aibar A, Chanal J. Physical education: the effect of epoch lengths on children's physical activity in a structured context. PLoS One. 2015;10(4):e0121238.CrossRefPubMedPubMedCentral Aibar A, Chanal J. Physical education: the effect of epoch lengths on children's physical activity in a structured context. PLoS One. 2015;10(4):e0121238.CrossRefPubMedPubMedCentral
22.
go back to reference Collings PJ, Brage S, Ridgway CL, Harvey NC, Godfrey KM, Inskip HM, et al. Physical activity intensity, sedentary time, and body composition in preschoolers. Am J Clin Nutr. 2013;97(5):1020–8.CrossRefPubMedPubMedCentral Collings PJ, Brage S, Ridgway CL, Harvey NC, Godfrey KM, Inskip HM, et al. Physical activity intensity, sedentary time, and body composition in preschoolers. Am J Clin Nutr. 2013;97(5):1020–8.CrossRefPubMedPubMedCentral
23.
go back to reference Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357–64.CrossRefPubMedPubMedCentral Choi L, Liu Z, Matthews CE, Buchowski MS. Validation of accelerometer wear and nonwear time classification algorithm. Med Sci Sports Exerc. 2011;43(2):357–64.CrossRefPubMedPubMedCentral
24.
go back to reference Saunders TJ, Tremblay MS, Mathieu ME, Henderson M, O'Loughlin J, Tremblay A, et al. Associations of sedentary behavior, sedentary bouts and breaks in sedentary time with cardiometabolic risk in children with a family history of obesity. PLoS One. 2013;8(11):e79143.CrossRefPubMedPubMedCentral Saunders TJ, Tremblay MS, Mathieu ME, Henderson M, O'Loughlin J, Tremblay A, et al. Associations of sedentary behavior, sedentary bouts and breaks in sedentary time with cardiometabolic risk in children with a family history of obesity. PLoS One. 2013;8(11):e79143.CrossRefPubMedPubMedCentral
25.
go back to reference Butte NF, Wong WW, Lee JS, Adolph AL, Puyau MR, Zakeri IF. Prediction of energy expenditure and physical activity in preschoolers. Med Sci Sports Exerc. 2014;46(6):1216–26.CrossRefPubMedPubMedCentral Butte NF, Wong WW, Lee JS, Adolph AL, Puyau MR, Zakeri IF. Prediction of energy expenditure and physical activity in preschoolers. Med Sci Sports Exerc. 2014;46(6):1216–26.CrossRefPubMedPubMedCentral
26.
go back to reference Tremblay MS, Leblanc AG, Carson V, Choquette L, Connor Gorber S, Dillman C, et al. Canadian physical activity guidelines for the early years (aged 0-4 years). Appl Physiol Nutr Metab. 2012;37(2):345–69.CrossRefPubMed Tremblay MS, Leblanc AG, Carson V, Choquette L, Connor Gorber S, Dillman C, et al. Canadian physical activity guidelines for the early years (aged 0-4 years). Appl Physiol Nutr Metab. 2012;37(2):345–69.CrossRefPubMed
27.
go back to reference Van Cauwenberghe E, Jones RA, Hinkley T, Crawford D, Okely AD. Patterns of physical activity and sedentary behaviour in preschool children. Int J Behav Nutr Phys Act. 2012;9:138.CrossRefPubMedPubMedCentral Van Cauwenberghe E, Jones RA, Hinkley T, Crawford D, Okely AD. Patterns of physical activity and sedentary behaviour in preschool children. Int J Behav Nutr Phys Act. 2012;9:138.CrossRefPubMedPubMedCentral
29.
go back to reference Raustorp A, Pagels P, Boldemann C, Cosco N, Soderstrom M, Martensson F. Accelerometer measured level of physical activity indoors and outdoors during preschool time in Sweden and the United States. J Phys Act Health. 2012;9(6):801–8.CrossRefPubMed Raustorp A, Pagels P, Boldemann C, Cosco N, Soderstrom M, Martensson F. Accelerometer measured level of physical activity indoors and outdoors during preschool time in Sweden and the United States. J Phys Act Health. 2012;9(6):801–8.CrossRefPubMed
30.
go back to reference Banda JA, Haydel KF, Davila T, Desai M, Bryson S, Haskell WL, et al. Effects of varying epoch lengths, wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. PLoS One. 2016;11(3):e0150534.CrossRefPubMedPubMedCentral Banda JA, Haydel KF, Davila T, Desai M, Bryson S, Haskell WL, et al. Effects of varying epoch lengths, wear time algorithms, and activity cut-points on estimates of child sedentary behavior and physical activity from accelerometer data. PLoS One. 2016;11(3):e0150534.CrossRefPubMedPubMedCentral
31.
go back to reference Kim Y, Lee JM, Peters BP, Gaesser GA, Welk GJ. Examination of different accelerometer cut-points for assessing sedentary behaviors in children. PLoS One. 2014;9(4):e90630.CrossRefPubMedPubMedCentral Kim Y, Lee JM, Peters BP, Gaesser GA, Welk GJ. Examination of different accelerometer cut-points for assessing sedentary behaviors in children. PLoS One. 2014;9(4):e90630.CrossRefPubMedPubMedCentral
32.
go back to reference Westerterp KR. Assessment of physical activity: a critical appraisal. Eur J Appl Physiol. 2009;105(6):823–8.CrossRefPubMed Westerterp KR. Assessment of physical activity: a critical appraisal. Eur J Appl Physiol. 2009;105(6):823–8.CrossRefPubMed
33.
go back to reference Beets MW, Bornstein D, Dowda M, Pate RR. Compliance with national guidelines for physical activity in U.S. preschoolers: measurement and interpretation. Pediatrics. 2011;127(4):658–64.CrossRefPubMedPubMedCentral Beets MW, Bornstein D, Dowda M, Pate RR. Compliance with national guidelines for physical activity in U.S. preschoolers: measurement and interpretation. Pediatrics. 2011;127(4):658–64.CrossRefPubMedPubMedCentral
34.
go back to reference Harvey NC, Cole ZA, Crozier SR, Kim M, Ntani G, Goodfellow L, et al. Physical activity, calcium intake and childhood bone mineral: a population-based cross-sectional study. Osteoporos Int. 2012;23(1):121–30.CrossRefPubMed Harvey NC, Cole ZA, Crozier SR, Kim M, Ntani G, Goodfellow L, et al. Physical activity, calcium intake and childhood bone mineral: a population-based cross-sectional study. Osteoporos Int. 2012;23(1):121–30.CrossRefPubMed
36.
go back to reference Gustafson SL, Rhodes RE. Parental correlates of physical activity in children and early adolescents. Sports Med. 2006;36(1):79–97.CrossRefPubMed Gustafson SL, Rhodes RE. Parental correlates of physical activity in children and early adolescents. Sports Med. 2006;36(1):79–97.CrossRefPubMed
37.
go back to reference Tremblay MS, Leblanc AG, Janssen I, Kho ME, Hicks A, Murumets K, et al. Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab. 2011;36(1):59–64. 5-71CrossRefPubMed Tremblay MS, Leblanc AG, Janssen I, Kho ME, Hicks A, Murumets K, et al. Canadian sedentary behaviour guidelines for children and youth. Appl Physiol Nutr Metab. 2011;36(1):59–64. 5-71CrossRefPubMed
38.
go back to reference Pujadas Botey A, Bayrampour H, Carson V, Vinturache A, Tough S. Adherence to Canadian physical activity and sedentary behaviour guidelines among children 2 to 13 years of age. Prev Med Rep. 2016;3:14–20.CrossRefPubMed Pujadas Botey A, Bayrampour H, Carson V, Vinturache A, Tough S. Adherence to Canadian physical activity and sedentary behaviour guidelines among children 2 to 13 years of age. Prev Med Rep. 2016;3:14–20.CrossRefPubMed
40.
go back to reference Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc. 2005;37(11 Suppl):S582–8.CrossRefPubMed Ward DS, Evenson KR, Vaughn A, Rodgers AB, Troiano RP. Accelerometer use in physical activity: best practices and research recommendations. Med Sci Sports Exerc. 2005;37(11 Suppl):S582–8.CrossRefPubMed
41.
go back to reference Ridgers ND, Salmon J, Ridley K, O'Connell E, Arundell L, Timperio A. Agreement between activPAL and ActiGraph for assessing children's sedentary time. Int J Behav Nutr Phys Act. 2012;9:15.CrossRefPubMedPubMedCentral Ridgers ND, Salmon J, Ridley K, O'Connell E, Arundell L, Timperio A. Agreement between activPAL and ActiGraph for assessing children's sedentary time. Int J Behav Nutr Phys Act. 2012;9:15.CrossRefPubMedPubMedCentral
42.
go back to reference Sedentary Behaviour Research N. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37(3):540–2.CrossRef Sedentary Behaviour Research N. Letter to the editor: standardized use of the terms “sedentary” and “sedentary behaviours”. Appl Physiol Nutr Metab. 2012;37(3):540–2.CrossRef
Metadata
Title
Objectively measured physical activity patterns, sedentary time and parent-reported screen-time across the day in four-year-old Swedish children
Authors
Daniel Berglind
Per Tynelius
Publication date
01-12-2018
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2018
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-017-4600-5

Other articles of this Issue 1/2018

BMC Public Health 1/2018 Go to the issue