Skip to main content
Top
Published in: BMC Public Health 1/2017

Open Access 01-12-2017 | Study protocol

A cluster-randomised controlled trial to promote physical activity in adolescents: the Raising Awareness of Physical Activity (RAW-PA) Study

Authors: Nicola D. Ridgers, Anna Timperio, Helen Brown, Kylie Ball, Susie Macfarlane, Samuel K. Lai, Kara Richards, Winsfred Ngan, Jo Salmon

Published in: BMC Public Health | Issue 1/2017

Login to get access

Abstract

Background

Recent technological advances provide an alternative yet underutilised opportunity for promoting physical activity in youth. The primary aim of the Raising Awareness of Physical Activity (RAW-PA) Study is to examine the short- and longer-term impact of a wearable activity monitor combined with digital behaviour change resources on adolescents’ daily physical activity levels.

Methods/Design

RAW-PA is a 12 week, multicomponent physical activity intervention that utilises a popular activity tracker (Fitbit® Flex) and supporting digital materials that will be delivered online via social media. The resources target key behaviour change techniques. The intervention structure and components have been informed by participatory research principles. RAW-PA will be evaluated using a cluster randomised controlled trial design with schools as the unit of randomisation. Twelve schools located in Melbourne, Australia, will allocated to either the intervention or wait-list control group. The target sample size is 300 Year 8 adolescents (aged 13–14 years). Participants’ moderate- to vigorous-intensity physical activity will be the primary outcome. Survey measures will be completed. Process factors (e.g. feasibility, acceptability/appeal, fidelity) will also be collected.

Discussion

To our knowledge, this study will provide some of the first evidence concerning the effect of wearable activity trackers and digital behaviour change resources on adolescents’ physical activity levels. This study will provide insights into the use of such technologies for physical activity promotion, which may have a significant impact on health education, promotion, practice and policy.

Trial registration

Australian and New Zealand Clinical Trials Registry No: ACTRN12616000899​448. Date of registration: July 7, 2016.
Literature
1.
go back to reference Janssen I, LeBlanc A. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral Janssen I, LeBlanc A. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral
2.
go back to reference Okely AD, Salmon J, Vella S, Cliff D, Timperio A, Tremblay M, et al. A systematic review to update the Australian physical activity recommendations for children and youth. Canberra: Commonwealth Department of Health and Ageing; 2012. Okely AD, Salmon J, Vella S, Cliff D, Timperio A, Tremblay M, et al. A systematic review to update the Australian physical activity recommendations for children and youth. Canberra: Commonwealth Department of Health and Ageing; 2012.
4.
go back to reference Department of Health. Does your child get 60 min of physical activity every day? Make your move - Sit less! Be active for life! Australia’s Physical Activity & Sedentary Behaviour Guidelines for Children (5–12 years). Canberra, Australia: Commonwealth of Australia, Department of Health; 2014. Department of Health. Does your child get 60 min of physical activity every day? Make your move - Sit less! Be active for life! Australia’s Physical Activity & Sedentary Behaviour Guidelines for Children (5–12 years). Canberra, Australia: Commonwealth of Australia, Department of Health; 2014.
5.
go back to reference Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.CrossRefPubMed Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.CrossRefPubMed
6.
go back to reference Gray CE, Barnes JD, Cowie Bonne J, Cameron C, Chaput J-P, Faulkner G, et al. Results from Canada’s 2014 report card on physical activity for children and youth. J Phys Act Health. 2014;11 Suppl 1:S26–32.CrossRefPubMed Gray CE, Barnes JD, Cowie Bonne J, Cameron C, Chaput J-P, Faulkner G, et al. Results from Canada’s 2014 report card on physical activity for children and youth. J Phys Act Health. 2014;11 Suppl 1:S26–32.CrossRefPubMed
7.
go back to reference Standage M, Wilkie HJ, Jago R, Foster C, Goad MA, Cumming SP. Results from England’s 2014 report card on physical activity for children and youth. J Phys Act Health. 2014;11 Suppl 1:S45–50.CrossRefPubMed Standage M, Wilkie HJ, Jago R, Foster C, Goad MA, Cumming SP. Results from England’s 2014 report card on physical activity for children and youth. J Phys Act Health. 2014;11 Suppl 1:S45–50.CrossRefPubMed
8.
go back to reference Nader PR, Bradley RH, Houts RM, McRitchie SL, O'Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA. 2008;300(3):295–305.CrossRefPubMed Nader PR, Bradley RH, Houts RM, McRitchie SL, O'Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA. 2008;300(3):295–305.CrossRefPubMed
9.
go back to reference Juneau CE, Benmarhnia T, Poulin AA, Côté S, Potvin L. Socioeconomic position during childhood and physical activity during adulthood: a systematic review. Int J Public Health. 2015;60(7):799–813.CrossRefPubMed Juneau CE, Benmarhnia T, Poulin AA, Côté S, Potvin L. Socioeconomic position during childhood and physical activity during adulthood: a systematic review. Int J Public Health. 2015;60(7):799–813.CrossRefPubMed
10.
go back to reference Drummond MJN, Drummond CE, Dollman J, Abery L. Physical activity from early childhood to adolescence: a literature review of issues and interventions in disadvantaged populations. J Student Wellbeing. 2010;4(2):17–31.CrossRef Drummond MJN, Drummond CE, Dollman J, Abery L. Physical activity from early childhood to adolescence: a literature review of issues and interventions in disadvantaged populations. J Student Wellbeing. 2010;4(2):17–31.CrossRef
11.
go back to reference Henning Brodersen N, Steptoe A, Boniface DR, Wardle J. Trends in physical activity and sedentary behaviour in adolescence: ethnic and socioeconomic differences. Br J Sports Med. 2007;41:140–4.CrossRef Henning Brodersen N, Steptoe A, Boniface DR, Wardle J. Trends in physical activity and sedentary behaviour in adolescence: ethnic and socioeconomic differences. Br J Sports Med. 2007;41:140–4.CrossRef
12.
go back to reference Kriemler S, Meyer U, Martin E, van Sluijs EMF, Andersen LB, Martin BW. Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update. Br J Sports Med. 2011;45(11):923–30.CrossRefPubMed Kriemler S, Meyer U, Martin E, van Sluijs EMF, Andersen LB, Martin BW. Effect of school-based interventions on physical activity and fitness in children and adolescents: a review of reviews and systematic update. Br J Sports Med. 2011;45(11):923–30.CrossRefPubMed
13.
go back to reference Dobbins M, Husson H, DeCorby K, LaRocca DL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651. Dobbins M, Husson H, DeCorby K, LaRocca DL. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6 to 18. Cochrane Database Syst Rev. 2013;2:CD007651.
14.
go back to reference Ball K. Traversing myths and mountains: Addressing socioeconomic inequities in the promotion of nutrition and physical activity behaviours. Int J Behav Nutr Phys Act. 2015;12:142.CrossRefPubMedPubMedCentral Ball K. Traversing myths and mountains: Addressing socioeconomic inequities in the promotion of nutrition and physical activity behaviours. Int J Behav Nutr Phys Act. 2015;12:142.CrossRefPubMedPubMedCentral
15.
go back to reference Dewar DL, Morgan PJ, Plotnikoff RC, Okely AD, Collins CE, Batterham M, et al. The nutrition and enjoyable activity for teen girls study: a cluster randomized controlled trial. Am J Prev Med. 2013;45(3):313–7.CrossRefPubMed Dewar DL, Morgan PJ, Plotnikoff RC, Okely AD, Collins CE, Batterham M, et al. The nutrition and enjoyable activity for teen girls study: a cluster randomized controlled trial. Am J Prev Med. 2013;45(3):313–7.CrossRefPubMed
16.
go back to reference Smith JJ, Morgan PJ, Plotnikoff RC, Dally KA, Salmon J, Okely AD, et al. Smart-phone obesity prevention trial for adolescent boys in low-income communities: the ATLAS RCT. Pediatrics. 2014;134(3):e723–e31.CrossRefPubMed Smith JJ, Morgan PJ, Plotnikoff RC, Dally KA, Salmon J, Okely AD, et al. Smart-phone obesity prevention trial for adolescent boys in low-income communities: the ATLAS RCT. Pediatrics. 2014;134(3):e723–e31.CrossRefPubMed
17.
go back to reference Lubans DR, Morgan PJ, Aguiar EJ, Callister R. Randomized controlled trial of the Physical Activity Leaders (PALs) program for adolescent boys from disadvantaged secondary schools. Prev Med. 2011;52(3–4):239–46.PubMed Lubans DR, Morgan PJ, Aguiar EJ, Callister R. Randomized controlled trial of the Physical Activity Leaders (PALs) program for adolescent boys from disadvantaged secondary schools. Prev Med. 2011;52(3–4):239–46.PubMed
18.
go back to reference Casey MM, Harvey JT, Telford A, Eime RM, Mooney A, Payne WR. Effectiveness of a school-community linked program on physical activity levels and health-related quality of life for adolescent girls. BMC Public Health. 2014;14:649.CrossRefPubMedPubMedCentral Casey MM, Harvey JT, Telford A, Eime RM, Mooney A, Payne WR. Effectiveness of a school-community linked program on physical activity levels and health-related quality of life for adolescent girls. BMC Public Health. 2014;14:649.CrossRefPubMedPubMedCentral
19.
go back to reference Sutherland R, Campbell E, Lubans DR, Morgan PJ, Okely AD, Nathan N, et al. ‘Physical Activity 4 Everyone’ school-based intervention to prevent decline in adolescent physical activity levels: 12 month (mid-intervention) report on a cluster randomised trial. Br J Sports Med. 2016;50(8):488–95.CrossRefPubMed Sutherland R, Campbell E, Lubans DR, Morgan PJ, Okely AD, Nathan N, et al. ‘Physical Activity 4 Everyone’ school-based intervention to prevent decline in adolescent physical activity levels: 12 month (mid-intervention) report on a cluster randomised trial. Br J Sports Med. 2016;50(8):488–95.CrossRefPubMed
20.
go back to reference Dubuy V, De Cocker K, De Bourdeaudhuij I, Maes L, Seghers J, Lefevre J, et al. Evaluation of a real world intervention using professional football players to promote a healthy diet and physical activity in children and adolescents from a lower socio-economic background: a controlled pretest-posttest design. BMC Public Health. 2014;14:457.CrossRefPubMedPubMedCentral Dubuy V, De Cocker K, De Bourdeaudhuij I, Maes L, Seghers J, Lefevre J, et al. Evaluation of a real world intervention using professional football players to promote a healthy diet and physical activity in children and adolescents from a lower socio-economic background: a controlled pretest-posttest design. BMC Public Health. 2014;14:457.CrossRefPubMedPubMedCentral
21.
go back to reference Lubans DR, Morgan PJ, Callister R, Collins CE. Effects of integrating pedometers, parental materials, and e-mail support within an extracurricular school sport intervention. J Adolesc Health. 2009;44(2):176–83.CrossRefPubMed Lubans DR, Morgan PJ, Callister R, Collins CE. Effects of integrating pedometers, parental materials, and e-mail support within an extracurricular school sport intervention. J Adolesc Health. 2009;44(2):176–83.CrossRefPubMed
22.
go back to reference Neumark-Sztainer D, Story M, Hannan PJ, Tharp T, Rex J. Factors associated with changes in physical activity: a cohort study of inactive girls. Arch Pediatr Adolesc Med. 2003;157(8):733–8.CrossRefPubMed Neumark-Sztainer D, Story M, Hannan PJ, Tharp T, Rex J. Factors associated with changes in physical activity: a cohort study of inactive girls. Arch Pediatr Adolesc Med. 2003;157(8):733–8.CrossRefPubMed
23.
go back to reference Lyons EJ, Lewis ZH, Mayrsohn BG, Rowland JL. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis. J Med Internet Res. 2014;16(8):e192.CrossRefPubMedPubMedCentral Lyons EJ, Lewis ZH, Mayrsohn BG, Rowland JL. Behavior change techniques implemented in electronic lifestyle activity monitors: a systematic content analysis. J Med Internet Res. 2014;16(8):e192.CrossRefPubMedPubMedCentral
24.
go back to reference Lewis ZH, Lyons EJ, Jarvis JM, Baillargeon J. Using an electronic activity monitor system as an intervention modality: a systematic review. BMC Public Health. 2015;15:585.CrossRefPubMedPubMedCentral Lewis ZH, Lyons EJ, Jarvis JM, Baillargeon J. Using an electronic activity monitor system as an intervention modality: a systematic review. BMC Public Health. 2015;15:585.CrossRefPubMedPubMedCentral
26.
go back to reference Ledger D, McCaffrey D. Inside wearables: How the science of human behavior change offers the secret to long-term engagement. Washington, DC: Endeavour Partners LLC; 2014. Ledger D, McCaffrey D. Inside wearables: How the science of human behavior change offers the secret to long-term engagement. Washington, DC: Endeavour Partners LLC; 2014.
27.
go back to reference Xenos M, Foot K. Not your father’s internet: the generation gap in online politics. In: Bennett WL, editor. Civic life online: learning how digital media can engage youth. Cambridge: The MIT Pres; 2008. p. 51–70. Xenos M, Foot K. Not your father’s internet: the generation gap in online politics. In: Bennett WL, editor. Civic life online: learning how digital media can engage youth. Cambridge: The MIT Pres; 2008. p. 51–70.
28.
go back to reference Ridgers ND, McNarry MA, Mackintosh KA. Feasibility and effectiveness of using wearable activity trackers in youth: a systematic review. JMIR mHealth uHealth. 2016;4(4):e129.CrossRefPubMedPubMedCentral Ridgers ND, McNarry MA, Mackintosh KA. Feasibility and effectiveness of using wearable activity trackers in youth: a systematic review. JMIR mHealth uHealth. 2016;4(4):e129.CrossRefPubMedPubMedCentral
29.
go back to reference Finkelstein EA, Haaland BA, Bilger M, Sahasranaman A, Sloan RA, Nang EE, et al. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol. doi: 10.1016/S2213-8587(16)30284-4. Finkelstein EA, Haaland BA, Bilger M, Sahasranaman A, Sloan RA, Nang EE, et al. Effectiveness of activity trackers with and without incentives to increase physical activity (TRIPPA): a randomised controlled trial. Lancet Diabetes Endocrinol. doi: 10.​1016/​S2213-8587(16)30284-4.
30.
go back to reference Jakicic JM, Davis KK, Rogers RJ, King WC, Marcus MD, Helsel D, et al. Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. JAMA. 2016;316(11):1161–71.CrossRefPubMed Jakicic JM, Davis KK, Rogers RJ, King WC, Marcus MD, Helsel D, et al. Effect of wearable technology combined with a lifestyle intervention on long-term weight loss: the IDEA randomized clinical trial. JAMA. 2016;316(11):1161–71.CrossRefPubMed
31.
go back to reference Fritz T, Huang EM, Murphy GC, Zimmerman T. Persuasive technology in the real world: A study of long-term use of activity sensing devices for fitness. CHI Conference on Human Factors in Computing Systems; 2014; Toronto, Canada. Fritz T, Huang EM, Murphy GC, Zimmerman T. Persuasive technology in the real world: A study of long-term use of activity sensing devices for fitness. CHI Conference on Human Factors in Computing Systems; 2014; Toronto, Canada.
32.
go back to reference Cadmus-Bertram LA, Marcus BH, Patterson RE, Parker BA, Morey BL. Randomized trial of a Fitbit-based physical activity intervention for women. Am J Prev Med. 2015;49(3):414–8.CrossRefPubMedPubMedCentral Cadmus-Bertram LA, Marcus BH, Patterson RE, Parker BA, Morey BL. Randomized trial of a Fitbit-based physical activity intervention for women. Am J Prev Med. 2015;49(3):414–8.CrossRefPubMedPubMedCentral
33.
go back to reference Lau PWC, Lau EY, Wong DP, Ransdell L. A systematic review of information and communication technology–based interventions for promoting physical activity behavior change in children and adolescents. J Med Internet Res. 2011;13(3):e48.CrossRefPubMedPubMedCentral Lau PWC, Lau EY, Wong DP, Ransdell L. A systematic review of information and communication technology–based interventions for promoting physical activity behavior change in children and adolescents. J Med Internet Res. 2011;13(3):e48.CrossRefPubMedPubMedCentral
34.
go back to reference Australian Bureau of Statistics. Household use of information technology, Australia, 2012–13. Canberra: Australian Bureau of Statistics; 2013. Report No.: 8146.0. Australian Bureau of Statistics. Household use of information technology, Australia, 2012–13. Canberra: Australian Bureau of Statistics; 2013. Report No.: 8146.0.
37.
go back to reference Ridgers ND, Timperio A, Crawford D, Salmon J. Five-year changes in school recess and lunchtime and the contribution to children's daily physical activity. Br J Sports Med. 2012;46(10):741–6.CrossRefPubMed Ridgers ND, Timperio A, Crawford D, Salmon J. Five-year changes in school recess and lunchtime and the contribution to children's daily physical activity. Br J Sports Med. 2012;46(10):741–6.CrossRefPubMed
38.
go back to reference Murray DM, Stevens J, Hannan PJ, Catellier DJ, Schmitz KH, Dowda M, et al. School-level intraclass correlation for physical activity in sixth grade girls. Med Sci Sports Exerc. 2006;38(5):926–36.CrossRefPubMedPubMedCentral Murray DM, Stevens J, Hannan PJ, Catellier DJ, Schmitz KH, Dowda M, et al. School-level intraclass correlation for physical activity in sixth grade girls. Med Sci Sports Exerc. 2006;38(5):926–36.CrossRefPubMedPubMedCentral
39.
go back to reference Ball K, Cleland V, Dollman J, Turrell G. Action area 7: Disadvantaged populations. In National Heart Foundation of Australia, editor. Blueprint for an Active Australia (2nd Ed). Melbourne; 2014. p. 50–4. Ball K, Cleland V, Dollman J, Turrell G. Action area 7: Disadvantaged populations. In National Heart Foundation of Australia, editor. Blueprint for an Active Australia (2nd Ed). Melbourne; 2014. p. 50–4.
40.
go back to reference Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):81–95.CrossRefPubMed Michie S, Richardson M, Johnston M, Abraham C, Francis J, Hardeman W, et al. The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: building an international consensus for the reporting of behavior change interventions. Ann Behav Med. 2013;46(1):81–95.CrossRefPubMed
41.
go back to reference Pearson N, Braithwaite R, Biddle SJ. The effectiveness of interventions to increase physical activity among adolescent girls: a meta-analysis. Acad Pediatr. 2015;15(1):9–18.CrossRefPubMed Pearson N, Braithwaite R, Biddle SJ. The effectiveness of interventions to increase physical activity among adolescent girls: a meta-analysis. Acad Pediatr. 2015;15(1):9–18.CrossRefPubMed
42.
go back to reference Salmon J, Booth ML, Phongsavan P, Murphy N, Timperio A. Promoting physical activity participation among children and adolescents. Epidemiol Rev. 2007;29:144–59.CrossRefPubMed Salmon J, Booth ML, Phongsavan P, Murphy N, Timperio A. Promoting physical activity participation among children and adolescents. Epidemiol Rev. 2007;29:144–59.CrossRefPubMed
43.
go back to reference Bandura A. Social foundations of thought and action: a social cognitive theory. Englewood Cliffs: Prentice Hall; 1986. Bandura A. Social foundations of thought and action: a social cognitive theory. Englewood Cliffs: Prentice Hall; 1986.
44.
go back to reference Epstein LH. Integrating theoretical approaches to promote physical activity. Am J Prev Med. 1998;15(4):257–65.CrossRefPubMed Epstein LH. Integrating theoretical approaches to promote physical activity. Am J Prev Med. 1998;15(4):257–65.CrossRefPubMed
45.
go back to reference Ledger D. Inside wearables - part 2: a look at the uncertain future of smart wearable devices, and five industry developments that will be necessary for meaningful mass market adoption and sustained engagement. Washington, DC: Endeavour Partners LLC; 2014. Ledger D. Inside wearables - part 2: a look at the uncertain future of smart wearable devices, and five industry developments that will be necessary for meaningful mass market adoption and sustained engagement. Washington, DC: Endeavour Partners LLC; 2014.
46.
go back to reference Lee JM, Kim Y, Welk GJ. Validity of consumer-based physical activity monitors. Med Sci Sports Exerc. 2014;46(9):1840–8.CrossRefPubMed Lee JM, Kim Y, Welk GJ. Validity of consumer-based physical activity monitors. Med Sci Sports Exerc. 2014;46(9):1840–8.CrossRefPubMed
47.
go back to reference Ridgers ND, Fairclough S. Assessing free-living physical activity using accelerometry: practical issues for researchers and practitioners. Eur J Sport Sci. 2011;11(3):205–13.CrossRef Ridgers ND, Fairclough S. Assessing free-living physical activity using accelerometry: practical issues for researchers and practitioners. Eur J Sport Sci. 2011;11(3):205–13.CrossRef
48.
go back to reference Trost SG, Ward DS, Moorhead SM, Watson PD, Riner W, Burke JR. Validity of the Computer Science and Applications (CSA) activity monitor in children. Med Sci Sports Exerc. 1998;30:629–33.CrossRefPubMed Trost SG, Ward DS, Moorhead SM, Watson PD, Riner W, Burke JR. Validity of the Computer Science and Applications (CSA) activity monitor in children. Med Sci Sports Exerc. 1998;30:629–33.CrossRefPubMed
49.
go back to reference Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;11(Suppl):S523–S30.CrossRef Freedson P, Pober D, Janz KF. Calibration of accelerometer output for children. Med Sci Sports Exerc. 2005;11(Suppl):S523–S30.CrossRef
50.
go back to reference Ridgers ND, Salmon J, Ridley K, O'Connell E, Arundell L, Timperio A. Agreement between activPAL and ActiGraph for assessing children's sedentary time. Int J Behav Nutr Phys Act. 2012;9:15.CrossRefPubMedPubMedCentral Ridgers ND, Salmon J, Ridley K, O'Connell E, Arundell L, Timperio A. Agreement between activPAL and ActiGraph for assessing children's sedentary time. Int J Behav Nutr Phys Act. 2012;9:15.CrossRefPubMedPubMedCentral
51.
go back to reference Prochaska JJ, Sallis JF, Long B. A physical activity screening measure for use with adolescents in primary care. Arch Pediatr Adolesc Med. 2001;155:554–9.CrossRefPubMed Prochaska JJ, Sallis JF, Long B. A physical activity screening measure for use with adolescents in primary care. Arch Pediatr Adolesc Med. 2001;155:554–9.CrossRefPubMed
52.
go back to reference Ridgers ND, Timperio A, Crawford D, Salmon J. Validity of a brief self-report instrument for assessing compliance with physical activity guidelines amongst adolescents. J Sci Med Sport. 2012;15(2):136–41.CrossRefPubMed Ridgers ND, Timperio A, Crawford D, Salmon J. Validity of a brief self-report instrument for assessing compliance with physical activity guidelines amongst adolescents. J Sci Med Sport. 2012;15(2):136–41.CrossRefPubMed
53.
go back to reference Sallis JF, McKenzie TL, Conway TL, Elder JP, Prochaska JJ, Brown M, et al. Environmental interventions for eating and physical activity: a randomized controlled trial in middle schools. Am J Prev Med. 2003;24:209–17.CrossRefPubMed Sallis JF, McKenzie TL, Conway TL, Elder JP, Prochaska JJ, Brown M, et al. Environmental interventions for eating and physical activity: a randomized controlled trial in middle schools. Am J Prev Med. 2003;24:209–17.CrossRefPubMed
54.
go back to reference Timperio A, Crawford D, Telford A, Salmon J. Perceptions about the local neighborhood and walking and cycling among children. Prev Med. 2004;38(1):39–47.CrossRefPubMed Timperio A, Crawford D, Telford A, Salmon J. Perceptions about the local neighborhood and walking and cycling among children. Prev Med. 2004;38(1):39–47.CrossRefPubMed
55.
go back to reference Salmon J, Arundell L, Hume C, Brown H, Hesketh K, Dunstan DW, et al. A cluster-randomized controlled trial to reduce sedentary behavior and promote physical activity and health of 8–9 year olds: the transform-Us! study. BMC Public Health. 2011;11:759.CrossRefPubMedPubMedCentral Salmon J, Arundell L, Hume C, Brown H, Hesketh K, Dunstan DW, et al. A cluster-randomized controlled trial to reduce sedentary behavior and promote physical activity and health of 8–9 year olds: the transform-Us! study. BMC Public Health. 2011;11:759.CrossRefPubMedPubMedCentral
56.
go back to reference Salmon J, Brown H, Hume C. Effects of strategies to promote children’s physical activity on potential mediators. Int J Obes. 2009;33:S66–73.CrossRef Salmon J, Brown H, Hume C. Effects of strategies to promote children’s physical activity on potential mediators. Int J Obes. 2009;33:S66–73.CrossRef
57.
go back to reference Brown H, Hume C, Pearson N, Salmon J. A systematic review of intervention effects on potential mediators of children’s physical activity. BMC Public Health. 2013;13:165.CrossRefPubMedPubMedCentral Brown H, Hume C, Pearson N, Salmon J. A systematic review of intervention effects on potential mediators of children’s physical activity. BMC Public Health. 2013;13:165.CrossRefPubMedPubMedCentral
58.
go back to reference Lubans DR, Foster C, Biddle SJ. A review of mediators of behaviour in interventions to promote physical activity among children and adolescents. Prev Med. 2008;47:463–70.CrossRefPubMed Lubans DR, Foster C, Biddle SJ. A review of mediators of behaviour in interventions to promote physical activity among children and adolescents. Prev Med. 2008;47:463–70.CrossRefPubMed
59.
go back to reference Dewar DL, Morgan PJ, Plotnikoff RC, Okely AD, Batterham M, Lubans DR. Exploring changes in physical activity, sedentary behaviors and hypothesized mediators in the NEAT girls group randomized controlled trial. J Sci Med Sport. 2014;17(1):39–46.CrossRefPubMed Dewar DL, Morgan PJ, Plotnikoff RC, Okely AD, Batterham M, Lubans DR. Exploring changes in physical activity, sedentary behaviors and hypothesized mediators in the NEAT girls group randomized controlled trial. J Sci Med Sport. 2014;17(1):39–46.CrossRefPubMed
60.
go back to reference Dewar DL, Lubans DR, Morgan PJ, Plotnikoff RC. Development and evaluation of social cognitive measures related to adolescent physical activity. J Phys Act Health. 2013;10(4):544–55.CrossRefPubMed Dewar DL, Lubans DR, Morgan PJ, Plotnikoff RC. Development and evaluation of social cognitive measures related to adolescent physical activity. J Phys Act Health. 2013;10(4):544–55.CrossRefPubMed
61.
go back to reference Robbins LB, Wu T-Y, Sikorskii A, Morley B. Psychometric assessment of the adolescent physical activity perceived benefits and barriers scales. J Nurs Meas. 2008;16(2):98–112.CrossRefPubMed Robbins LB, Wu T-Y, Sikorskii A, Morley B. Psychometric assessment of the adolescent physical activity perceived benefits and barriers scales. J Nurs Meas. 2008;16(2):98–112.CrossRefPubMed
62.
go back to reference Motl RW, Dishman RK, Saunders R, Dowda M, Felton G, Pate RR. Measuring enjoyment of physical activity in adolescent girls. Am J Prev Med. 2001;21(2):110–7.CrossRefPubMed Motl RW, Dishman RK, Saunders R, Dowda M, Felton G, Pate RR. Measuring enjoyment of physical activity in adolescent girls. Am J Prev Med. 2001;21(2):110–7.CrossRefPubMed
63.
go back to reference Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W, et al. Process evaluation of complex interventions: medical research council guidance. Br Med J. 2015;350:h1258.CrossRef Moore GF, Audrey S, Barker M, Bond L, Bonell C, Hardeman W, et al. Process evaluation of complex interventions: medical research council guidance. Br Med J. 2015;350:h1258.CrossRef
64.
go back to reference Twisk JWR. Applied multilevel analysis. Cambridge: Cambridge University Press; 2006.CrossRef Twisk JWR. Applied multilevel analysis. Cambridge: Cambridge University Press; 2006.CrossRef
66.
go back to reference Ridgers ND, Knowles ZR, Sayers J. Encouraging play in the natural environment: a child-focused evaluation of forest school. Child Geographies. 2012;10:55–71. Ridgers ND, Knowles ZR, Sayers J. Encouraging play in the natural environment: a child-focused evaluation of forest school. Child Geographies. 2012;10:55–71.
67.
go back to reference Wilson DK, Van Horn ML, Kitzman-Ulrich H, Saunders R, Pate R, Lawman HG, et al. Results of the “Active by Choice Today” (ACT) randomized trial for increasing physical activity in low-income and minority adolescents. Health Psychol. 2011;30(4):463–71.CrossRefPubMedPubMedCentral Wilson DK, Van Horn ML, Kitzman-Ulrich H, Saunders R, Pate R, Lawman HG, et al. Results of the “Active by Choice Today” (ACT) randomized trial for increasing physical activity in low-income and minority adolescents. Health Psychol. 2011;30(4):463–71.CrossRefPubMedPubMedCentral
68.
go back to reference Gouveia R, Karapanos E, Hassenzahl M. How do we engage with activity trackers? A longitudinal study of study of Habito (pp. 1305–16). Presented at: UbComp'15; September 7–11, 2015; Osaka, Japan. Gouveia R, Karapanos E, Hassenzahl M. How do we engage with activity trackers? A longitudinal study of study of Habito (pp. 1305–16). Presented at: UbComp'15; September 7–11, 2015; Osaka, Japan.
69.
go back to reference Klesges LM, Estabrooks PA, Dzewaltowski DA, Bull SS, Glasgow RE. Beginning with the application in mind: designing and planning health behavior change interventions to enhance dissemination. Ann Behav Med. 2005;29(Suppl):66–75.CrossRefPubMed Klesges LM, Estabrooks PA, Dzewaltowski DA, Bull SS, Glasgow RE. Beginning with the application in mind: designing and planning health behavior change interventions to enhance dissemination. Ann Behav Med. 2005;29(Suppl):66–75.CrossRefPubMed
70.
go back to reference Milat AJ, King L, Bauman AE, Redman S. The concept of scalability: increasing the scale and potential adoption of health promotion interventions into policy and practice. Health Promot Int. 2012;28(4):285–98.PubMed Milat AJ, King L, Bauman AE, Redman S. The concept of scalability: increasing the scale and potential adoption of health promotion interventions into policy and practice. Health Promot Int. 2012;28(4):285–98.PubMed
71.
go back to reference Ball K, Carver A, Downing K, Jackson M, O’Rourke K. Addressing the social determinants of inequities in physical activity and sedentary behaviours. Health Promot Int. 2015;30 Suppl 2:ii8–ii19.CrossRef Ball K, Carver A, Downing K, Jackson M, O’Rourke K. Addressing the social determinants of inequities in physical activity and sedentary behaviours. Health Promot Int. 2015;30 Suppl 2:ii8–ii19.CrossRef
Metadata
Title
A cluster-randomised controlled trial to promote physical activity in adolescents: the Raising Awareness of Physical Activity (RAW-PA) Study
Authors
Nicola D. Ridgers
Anna Timperio
Helen Brown
Kylie Ball
Susie Macfarlane
Samuel K. Lai
Kara Richards
Winsfred Ngan
Jo Salmon
Publication date
01-12-2017
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2017
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-016-3945-5

Other articles of this Issue 1/2017

BMC Public Health 1/2017 Go to the issue