Skip to main content
Top
Published in: BMC Public Health 1/2016

Open Access 01-12-2016 | Study protocol

Study protocol: the Fueling Learning through Exercise (FLEX) study – a randomized controlled trial of the impact of school-based physical activity programs on children’s physical activity, cognitive function, and academic achievement

Authors: Catherine M. Wright, Paula J. Duquesnay, Stephanie Anzman-Frasca, Virginia R. Chomitz, Kenneth Chui, Christina D. Economos, Elizabeth G. Langevin, Miriam E. Nelson, Jennifer M. Sacheck

Published in: BMC Public Health | Issue 1/2016

Login to get access

Abstract

Background

Physical activity (PA) is critical to preventing childhood obesity and contributes to children’s overall physical and cognitive health, yet fewer than half of all children achieve the recommended 60 min per day of moderate-to-vigorous physical activity (MVPA). Schools are an ideal setting to meeting PA guidelines, but competing demands and limited resources have impacted PA opportunities. The Fueling Learning through Exercise (FLEX) Study is a randomized controlled trial that will evaluate the impact of two innovative school-based PA programs on children’s MVPA, cognitive function, and academic outcomes.

Methods

Twenty-four public elementary schools from low-income, ethnically diverse communities around Massachusetts were recruited and randomized to receive either 100 Mile Club® (walking/running program) or Just Move™ (classroom-based PA program) intervention, or control. Schoolchildren (grades 3–4, approximately 50 per school) were recruited to participate in evaluation. Primary outcome measures include PA via 7-day accelerometry (Actigraph GT3X+ and wGT3X-BT), cognitive assessments, and academic achievement via state standardized test scores. Additional measures include height and weight, surveys assessing psycho-social factors related to PA, and dietary intake. School-level surveys assess PA infrastructure and resources and intervention implementation. Data are collected at baseline, mid-point (5–6 months post-baseline), and post-intervention (approximately 1.5 years post-baseline). Demographic data were collected by parents/caregivers at baseline. Mixed-effect models will test the short- and long-term effects of both programs on minutes spent in MVPA, as well as secondary outcomes including cognitive and academic outcomes.

Discussion

The FLEX study will evaluate strategies for increasing children’s MVPA through two innovative, low-cost, school-based PA programs as well as their impact on children’s cognitive functioning and academic success. Demonstration of a relationship between school-based MVPA with neutral or improved, rather than diminished, academic outcomes in a naturalistic environment has the potential to positively influence investment in school PA programs and initiatives.

Trial registration

ClinicalTrials.gov Identifier: NCT02810834. Registered May 11, 2015. (Retrospectively registered)
Literature
1.
go back to reference Andersen LB, Riddoch C, Kriemler S, Hills A. Physical activity and cardiovascular risk factors in children. Br J Sport Med. 2011;45(11):871–6.CrossRef Andersen LB, Riddoch C, Kriemler S, Hills A. Physical activity and cardiovascular risk factors in children. Br J Sport Med. 2011;45(11):871–6.CrossRef
2.
go back to reference Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7(1):40.CrossRefPubMedPubMedCentral Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7(1):40.CrossRefPubMedPubMedCentral
3.
go back to reference Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, Brunner-La Rocca HP, van Mechelen W, Puder JJ. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340(feb23 1):c785.CrossRefPubMedPubMedCentral Kriemler S, Zahner L, Schindler C, Meyer U, Hartmann T, Hebestreit H, Brunner-La Rocca HP, van Mechelen W, Puder JJ. Effect of school based physical activity programme (KISS) on fitness and adiposity in primary schoolchildren: cluster randomised controlled trial. BMJ. 2010;340(feb23 1):c785.CrossRefPubMedPubMedCentral
4.
go back to reference Strong WB, Malina RM, Blimkie CJR, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146(6):732–7.CrossRefPubMed Strong WB, Malina RM, Blimkie CJR, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146(6):732–7.CrossRefPubMed
5.
go back to reference Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181.CrossRefPubMed Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181.CrossRefPubMed
6.
go back to reference Story M, Nanney MS, Schwartz MB. Schools and obesity prevention: creating school environments and policies to promote healthy eating and physical activity. Milbank Q. 2009;87(1):71–100.CrossRefPubMedPubMedCentral Story M, Nanney MS, Schwartz MB. Schools and obesity prevention: creating school environments and policies to promote healthy eating and physical activity. Milbank Q. 2009;87(1):71–100.CrossRefPubMedPubMedCentral
7.
go back to reference Lounsbery MA, McKenzie TL, Trost S, Smith NJ. Facilitators and barriers to adopting evidence-based physical education in elementary schools. J Phys Act Health. 2011;8(1):S17.CrossRef Lounsbery MA, McKenzie TL, Trost S, Smith NJ. Facilitators and barriers to adopting evidence-based physical education in elementary schools. J Phys Act Health. 2011;8(1):S17.CrossRef
8.
go back to reference Cox L, Berends V, Sallis JE, St. John JM, McNeil B, Gonzalez M, Agron P. Engaging school governance leaders to influence physical activity policies. J Phys Act Health. 2011;8(1):S40.CrossRefPubMed Cox L, Berends V, Sallis JE, St. John JM, McNeil B, Gonzalez M, Agron P. Engaging school governance leaders to influence physical activity policies. J Phys Act Health. 2011;8(1):S40.CrossRefPubMed
9.
go back to reference Eveland-Sayers BM, Farley RS, Fuller DK, Morgan DW, Caputo JL. Physical fitness and academic achievement in elementary school children. J Phys Act Health. 2009;6(1):99–104.CrossRefPubMed Eveland-Sayers BM, Farley RS, Fuller DK, Morgan DW, Caputo JL. Physical fitness and academic achievement in elementary school children. J Phys Act Health. 2009;6(1):99–104.CrossRefPubMed
10.
go back to reference Kim H-YP, Frongillo EA, Han S-S, Oh S-Y, Kim W-K, Jang Y-A, Won H-S, Lee H-S, Kim S-H. Academic performance of Korean children is associated with dietary behaviours and physical status. Asia Pac J Clin. 2003;12(2):186–92. Kim H-YP, Frongillo EA, Han S-S, Oh S-Y, Kim W-K, Jang Y-A, Won H-S, Lee H-S, Kim S-H. Academic performance of Korean children is associated with dietary behaviours and physical status. Asia Pac J Clin. 2003;12(2):186–92.
11.
go back to reference Roberts CK. Low aerobic fitness and obesity are associated with lower standardized test scores in children. J Pediatr. 2010;156(5):711–8, 718.e711.CrossRef Roberts CK. Low aerobic fitness and obesity are associated with lower standardized test scores in children. J Pediatr. 2010;156(5):711–8, 718.e711.CrossRef
12.
go back to reference Sallis JF, McKenzie TL, Kolody B, Lewis M, Marshall S, Rosengard P. Effects of health-related physical education on academic achievement: project SPARK. Res Q Exerc Sport. 1999;70(2):127–34.CrossRefPubMed Sallis JF, McKenzie TL, Kolody B, Lewis M, Marshall S, Rosengard P. Effects of health-related physical education on academic achievement: project SPARK. Res Q Exerc Sport. 1999;70(2):127–34.CrossRefPubMed
13.
14.
go back to reference Institute of Medicine. Educating the student body: taking physical activity and physical education to school. Washington: National Academies Press; 2013. Institute of Medicine. Educating the student body: taking physical activity and physical education to school. Washington: National Academies Press; 2013.
15.
go back to reference Singh A, Uijtdewilligen L, Twisk JW, van Mechelen W, Chinapaw MJ. Physical activity and performance at school: a systematic review of the literature including a methodological quality assessment. Arch Pediatr Adolesc Med. 2012;166(1):49–55.CrossRefPubMed Singh A, Uijtdewilligen L, Twisk JW, van Mechelen W, Chinapaw MJ. Physical activity and performance at school: a systematic review of the literature including a methodological quality assessment. Arch Pediatr Adolesc Med. 2012;166(1):49–55.CrossRefPubMed
16.
go back to reference McCullick BA, Baker T, Tomporowski PD, Templin TJ, Lux K, Isaac T. An analysis of state physical education policies. J Teach Phys Educ. 2012;31(2):200–10.CrossRef McCullick BA, Baker T, Tomporowski PD, Templin TJ, Lux K, Isaac T. An analysis of state physical education policies. J Teach Phys Educ. 2012;31(2):200–10.CrossRef
17.
go back to reference Carlson JA, Mignano AM, Norman GJ, McKenzie TL, Kerr J, Arredondo EM, Madanat H, Cain KL, Elder JP, Saelens BE. Socioeconomic disparities in elementary school practices and children’s physical activity during school. Am J Health Promot. 2014;28(sp3):S47–53.CrossRefPubMedPubMedCentral Carlson JA, Mignano AM, Norman GJ, McKenzie TL, Kerr J, Arredondo EM, Madanat H, Cain KL, Elder JP, Saelens BE. Socioeconomic disparities in elementary school practices and children’s physical activity during school. Am J Health Promot. 2014;28(sp3):S47–53.CrossRefPubMedPubMedCentral
19.
go back to reference Kibbe DL, Hackett J, Hurley M, McFarland A, Schubert KG, Schultz A, Harris S. Ten years of TAKE 10!®: integrating physical activity with academic concepts in elementary school classrooms. Prev Med. 2011;52(Supplement):S43–50.CrossRefPubMed Kibbe DL, Hackett J, Hurley M, McFarland A, Schubert KG, Schultz A, Harris S. Ten years of TAKE 10!®: integrating physical activity with academic concepts in elementary school classrooms. Prev Med. 2011;52(Supplement):S43–50.CrossRefPubMed
20.
go back to reference Mahar MT. Impact of short bouts of physical activity on attention-to-task in elementary school children. Prev Med. 2011;52(Supplement):S60–4.CrossRefPubMed Mahar MT. Impact of short bouts of physical activity on attention-to-task in elementary school children. Prev Med. 2011;52(Supplement):S60–4.CrossRefPubMed
21.
go back to reference Hatfield DP, Lynskey VM, Economos CD, Nichols ER, Whitman NB, Nelson ME. Crowdsourcing innovative physical activity programs: active schools acceleration project case study. Transl J Am College Sports Med. 2016;1(1):1–9. Hatfield DP, Lynskey VM, Economos CD, Nichols ER, Whitman NB, Nelson ME. Crowdsourcing innovative physical activity programs: active schools acceleration project case study. Transl J Am College Sports Med. 2016;1(1):1–9.
23.
go back to reference Franks AL, Kelder SH, Dino GA, Horn KA, Gortmaker SL, Wiecha JL, Simoes EJ. School-based programs: lessons learned from CATCH, planet health, and not-on-tobacco. Prev Chronic Dis. 2007;4(2):A33.PubMedPubMedCentral Franks AL, Kelder SH, Dino GA, Horn KA, Gortmaker SL, Wiecha JL, Simoes EJ. School-based programs: lessons learned from CATCH, planet health, and not-on-tobacco. Prev Chronic Dis. 2007;4(2):A33.PubMedPubMedCentral
24.
go back to reference Child and Adolescent Health Measurement Initiative 2005/06 NS-CSHCN. Health conditions and functional difficulties. Data Resource Center, supported by Cooperative Agreement 1‐U59‐MC06980‐01 from the U.S. Department of Health and Human Services, Health Resources and Services Administration (HRSA), Maternal and Child Health Bureau (MCHB). 2012. http://www.childhealthdata.org. Accessed 1 Aug 2016. Child and Adolescent Health Measurement Initiative 2005/06 NS-CSHCN. Health conditions and functional difficulties. Data Resource Center, supported by Cooperative Agreement 1‐U59‐MC06980‐01 from the U.S. Department of Health and Human Services, Health Resources and Services Administration (HRSA), Maternal and Child Health Bureau (MCHB). 2012. http://​www.​childhealthdata.​org. Accessed 1 Aug 2016.
25.
go back to reference Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, Mei Z, Curtin LR, Roche AF, Johnson CL. CDC growth charts: United States. Adv Data. 2000;314:1–27. Kuczmarski RJ, Ogden CL, Grummer-Strawn LM, Flegal KM, Guo SS, Wei R, Mei Z, Curtin LR, Roche AF, Johnson CL. CDC growth charts: United States. Adv Data. 2000;314:1–27.
26.
go back to reference Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10(3):150–7.CrossRefPubMed Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10(3):150–7.CrossRefPubMed
28.
go back to reference Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.CrossRefPubMed Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity for children. J Sports Sci. 2008;26(14):1557–65.CrossRefPubMed
29.
go back to reference Taylor AF, Kuo FE. Children with attention deficits concentrate better after walk in the park. J Atten Disord. 2009;12(5):402–9.CrossRefPubMed Taylor AF, Kuo FE. Children with attention deficits concentrate better after walk in the park. J Atten Disord. 2009;12(5):402–9.CrossRefPubMed
30.
go back to reference van der Niet AG, Smith J, Oosterlaan J, Scherder EJA, Hartman E, Visscher C. Effects of a cognitively demanding aerobic intervention during recess on children’s physical fitness and executive functioning. Pediatr Exerc Sci. 2016;28(1):64–70.CrossRefPubMed van der Niet AG, Smith J, Oosterlaan J, Scherder EJA, Hartman E, Visscher C. Effects of a cognitively demanding aerobic intervention during recess on children’s physical fitness and executive functioning. Pediatr Exerc Sci. 2016;28(1):64–70.CrossRefPubMed
31.
go back to reference Golden CJ, Freshwater SM. Stroop color and word test. 1978. Golden CJ, Freshwater SM. Stroop color and word test. 1978.
32.
go back to reference Buck SM, Hillman CH, Castelli DM. The relation of aerobic fitness to stroop task performance in preadolescent children. Med Sci Sports Exerc. 2008;40(1):166–72.CrossRefPubMed Buck SM, Hillman CH, Castelli DM. The relation of aerobic fitness to stroop task performance in preadolescent children. Med Sci Sports Exerc. 2008;40(1):166–72.CrossRefPubMed
33.
go back to reference Hollar D, Messiah SE, Lopez-Mitnik G, Hollar TL, Almon M, Agatston AS. Effect of a two-year obesity prevention intervention on percentile changes in body mass index and academic performance in low-income elementary school children. Am J Public Health. 2010;100(4):646–53.CrossRefPubMedPubMedCentral Hollar D, Messiah SE, Lopez-Mitnik G, Hollar TL, Almon M, Agatston AS. Effect of a two-year obesity prevention intervention on percentile changes in body mass index and academic performance in low-income elementary school children. Am J Public Health. 2010;100(4):646–53.CrossRefPubMedPubMedCentral
34.
go back to reference Chomitz VR, Slining MM, McGowan RJ, Mitchell SE, Dawson GF, Hacker KA. Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United States. J Sch Health. 2009;79(1):30–7.CrossRefPubMed Chomitz VR, Slining MM, McGowan RJ, Mitchell SE, Dawson GF, Hacker KA. Is there a relationship between physical fitness and academic achievement? Positive results from public school children in the northeastern United States. J Sch Health. 2009;79(1):30–7.CrossRefPubMed
35.
go back to reference Trost SG, McCoy TA, Vander Veur SS, Mallya G, Duffy ML, Foster GD. Physical activity patterns of inner-city elementary schoolchildren. Med Sci Sports Exerc. 2013;45(3):470–4.CrossRefPubMed Trost SG, McCoy TA, Vander Veur SS, Mallya G, Duffy ML, Foster GD. Physical activity patterns of inner-city elementary schoolchildren. Med Sci Sports Exerc. 2013;45(3):470–4.CrossRefPubMed
36.
go back to reference Saunders RP, Pate RR, Felton G, Dowda M, Weinrich MC, Ward DS, Parsons MA, Baranowski T. Development of questionnaires to measure psychosocial influences on children’s physical activity. Prev Med. 1997;26(2):241–7.CrossRefPubMed Saunders RP, Pate RR, Felton G, Dowda M, Weinrich MC, Ward DS, Parsons MA, Baranowski T. Development of questionnaires to measure psychosocial influences on children’s physical activity. Prev Med. 1997;26(2):241–7.CrossRefPubMed
38.
go back to reference Harter S. The perceived competence scale for children. Child Dev. 1982;53(1):87–97. Harter S. The perceived competence scale for children. Child Dev. 1982;53(1):87–97.
39.
go back to reference Cooper SB, Bandelow S, Nevill ME. Breakfast consumption and cognitive function in adolescent schoolchildren. Physiol Behav. 2011;103(5):431–9.CrossRefPubMed Cooper SB, Bandelow S, Nevill ME. Breakfast consumption and cognitive function in adolescent schoolchildren. Physiol Behav. 2011;103(5):431–9.CrossRefPubMed
40.
go back to reference Cullen KW, Watson K, Zakeri I. Relative reliability and validity of the Block Kids questionnaire among youth aged 10 to 17 years. J Am Diet Assoc. 2008;108(5):862–6.CrossRefPubMed Cullen KW, Watson K, Zakeri I. Relative reliability and validity of the Block Kids questionnaire among youth aged 10 to 17 years. J Am Diet Assoc. 2008;108(5):862–6.CrossRefPubMed
41.
go back to reference Rockett HR, Breitenbach M, Frazier AL, Witschi J, Wolf AM, Field AE, Colditz GA. Validation of a youth/adolescent food frequency questionnaire. Prev Med. 1997;26(6):808–16.CrossRefPubMed Rockett HR, Breitenbach M, Frazier AL, Witschi J, Wolf AM, Field AE, Colditz GA. Validation of a youth/adolescent food frequency questionnaire. Prev Med. 1997;26(6):808–16.CrossRefPubMed
42.
go back to reference Smith C, Fila S. Comparison of the Kid’s Block food frequency questionnaire to the 24‐hour recall in urban Native American youth. Am J Hum Biol. 2006;18(5):706–9.CrossRefPubMed Smith C, Fila S. Comparison of the Kid’s Block food frequency questionnaire to the 24‐hour recall in urban Native American youth. Am J Hum Biol. 2006;18(5):706–9.CrossRefPubMed
43.
go back to reference Block G, Murphy M, Roullet J, Wakimoto P, Crawford P, Block T. Pilot validation of a FFQ for children 8–10 years. In: Fourth International Conference on Dietary Assessment Methods: 2000. 2000. Block G, Murphy M, Roullet J, Wakimoto P, Crawford P, Block T. Pilot validation of a FFQ for children 8–10 years. In: Fourth International Conference on Dietary Assessment Methods: 2000. 2000.
44.
go back to reference USDA and USDHHS. Dietary Guidelines for Americans, 2010. 7th ed. Washington: U.S. Government Printing Office; 2010. USDA and USDHHS. Dietary Guidelines for Americans, 2010. 7th ed. Washington: U.S. Government Printing Office; 2010.
45.
go back to reference Todd V, Aaron LC, Jens CE, David BA. Reliable prediction of insulin resistance by a school-based fitness test in middle-school children. Int J Pediatr Endocrinol. 2009;2009:487804.CrossRef Todd V, Aaron LC, Jens CE, David BA. Reliable prediction of insulin resistance by a school-based fitness test in middle-school children. Int J Pediatr Endocrinol. 2009;2009:487804.CrossRef
46.
go back to reference Leger L, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101.CrossRefPubMed Leger L, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6(2):93–101.CrossRefPubMed
47.
go back to reference Plowman SA, Meredith MD, editors. Fitnessgram/Activitygram reference guide. 4th ed. Dallas: The Cooper Institute; 2013. Plowman SA, Meredith MD, editors. Fitnessgram/Activitygram reference guide. 4th ed. Dallas: The Cooper Institute; 2013.
48.
go back to reference Lounsbery MAF, McKenzie TL, Morrow Jr JR, Holt KA, Budnar RG. School physical activity policy assessment. J Phys Act Health. 2013;10(4):496–503.CrossRefPubMed Lounsbery MAF, McKenzie TL, Morrow Jr JR, Holt KA, Budnar RG. School physical activity policy assessment. J Phys Act Health. 2013;10(4):496–503.CrossRefPubMed
49.
go back to reference Hubbard K, Economos CD, Bakun P, Boulos R, Chui K, Mueller MP, Smith K, Sacheck J. Disparities in moderate-to-vigorous physical activity among girls and overweight and obese schoolchildren during school-and out-of-school time. Int J Behav Nutr Phys Act. 2016;13(1):1.CrossRef Hubbard K, Economos CD, Bakun P, Boulos R, Chui K, Mueller MP, Smith K, Sacheck J. Disparities in moderate-to-vigorous physical activity among girls and overweight and obese schoolchildren during school-and out-of-school time. Int J Behav Nutr Phys Act. 2016;13(1):1.CrossRef
50.
go back to reference Schwartz MB, Lund AE, Grow HM, McDonnell E, Probart C, Samuelson A, Lytle L. A comprehensive coding system to measure the quality of school wellness policies. J Am Diet Assoc. 2009;109(7):1256–62.CrossRefPubMed Schwartz MB, Lund AE, Grow HM, McDonnell E, Probart C, Samuelson A, Lytle L. A comprehensive coding system to measure the quality of school wellness policies. J Am Diet Assoc. 2009;109(7):1256–62.CrossRefPubMed
51.
go back to reference Verstraete SJM, Cardon GM, De Clercq DLR, De Bourdeaudhuij IMM. Increasing children’s physical activity levels during recess periods in elementary schools: the effects of providing game equipment. Eur J Public Health. 2006;16(4):415–9.CrossRefPubMed Verstraete SJM, Cardon GM, De Clercq DLR, De Bourdeaudhuij IMM. Increasing children’s physical activity levels during recess periods in elementary schools: the effects of providing game equipment. Eur J Public Health. 2006;16(4):415–9.CrossRefPubMed
52.
go back to reference Donnelly JE, Greene JL, Gibson CA, Sullivan DK, Hansen DM, Hillman CH, Poggio J, Mayo MS, Smith BK, Lambourne K, et al. Physical activity and academic achievement across the curriculum (A + PAAC): rationale and design of a 3-year, cluster-randomized trial. BMC Public Health. 2013;13(1):307.CrossRefPubMedPubMedCentral Donnelly JE, Greene JL, Gibson CA, Sullivan DK, Hansen DM, Hillman CH, Poggio J, Mayo MS, Smith BK, Lambourne K, et al. Physical activity and academic achievement across the curriculum (A + PAAC): rationale and design of a 3-year, cluster-randomized trial. BMC Public Health. 2013;13(1):307.CrossRefPubMedPubMedCentral
53.
go back to reference Hemming K, Girling AJ, Sitch AJ, Marsh J, Lilford RJ. Sample size calculations for cluster randomised controlled trials with a fixed number of clusters. BMC Med Res Methodol. 2011;11(1):102.CrossRefPubMedPubMedCentral Hemming K, Girling AJ, Sitch AJ, Marsh J, Lilford RJ. Sample size calculations for cluster randomised controlled trials with a fixed number of clusters. BMC Med Res Methodol. 2011;11(1):102.CrossRefPubMedPubMedCentral
54.
go back to reference Singh GK, Siahpush M, Kogan MD. Rising Social Inequalities in US childhood obesity, 2003–2007. Ann Epidemiol. 2010;20(1):40–52.CrossRefPubMed Singh GK, Siahpush M, Kogan MD. Rising Social Inequalities in US childhood obesity, 2003–2007. Ann Epidemiol. 2010;20(1):40–52.CrossRefPubMed
56.
go back to reference Belcher BR, Berrigan D, Dodd KW, Emken BA, Chou CP, Spruijt-Metz D. Physical activity in US youth: effect of race/ethnicity, Age, gender, and weight status. Med Sci Sports Exerc. 2010;42(12):2211–21.CrossRefPubMedPubMedCentral Belcher BR, Berrigan D, Dodd KW, Emken BA, Chou CP, Spruijt-Metz D. Physical activity in US youth: effect of race/ethnicity, Age, gender, and weight status. Med Sci Sports Exerc. 2010;42(12):2211–21.CrossRefPubMedPubMedCentral
57.
go back to reference Siceloff ER, Wilson DK, Van Horn L. A longitudinal study of the effects of instrumental and emotional social support on physical activity in underserved adolescents in the ACT trial. Ann Behav Med. 2014;48(1):71–9.PubMedPubMedCentral Siceloff ER, Wilson DK, Van Horn L. A longitudinal study of the effects of instrumental and emotional social support on physical activity in underserved adolescents in the ACT trial. Ann Behav Med. 2014;48(1):71–9.PubMedPubMedCentral
58.
go back to reference Wilson DK, Lawman HG, Segal M, Chappell S. Neighborhood and parental supports for physical activity in minority adolescents. Am J Prev Med. 2011;41(4):399–406.CrossRefPubMedPubMedCentral Wilson DK, Lawman HG, Segal M, Chappell S. Neighborhood and parental supports for physical activity in minority adolescents. Am J Prev Med. 2011;41(4):399–406.CrossRefPubMedPubMedCentral
Metadata
Title
Study protocol: the Fueling Learning through Exercise (FLEX) study – a randomized controlled trial of the impact of school-based physical activity programs on children’s physical activity, cognitive function, and academic achievement
Authors
Catherine M. Wright
Paula J. Duquesnay
Stephanie Anzman-Frasca
Virginia R. Chomitz
Kenneth Chui
Christina D. Economos
Elizabeth G. Langevin
Miriam E. Nelson
Jennifer M. Sacheck
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2016
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-016-3719-0

Other articles of this Issue 1/2016

BMC Public Health 1/2016 Go to the issue