Skip to main content
Top
Published in: BMC Public Health 1/2016

Open Access 01-12-2016 | Research article

Objectively measured physical activity levels and sedentary time in 7–9-year-old Estonian schoolchildren: independent associations with body composition parameters

Authors: Eva-Maria Riso, Merike Kull, Kerli Mooses, Aave Hannus, Jaak Jürimäe

Published in: BMC Public Health | Issue 1/2016

Login to get access

Abstract

Background

Sufficient daily physical activity (PA) is necessary for physical, social and mental health benefits during growth. Most of the available data on children is based on subjective reports, while only limited data on objective PA and sedentary levels is available for primary school children. Increased PA is also an important health indicator of body composition parameters, especially body adiposity indices. The aim of the present study was to determine objectively the amount of daily PA levels at different intensities and sedentary time in normal-weight (NW) and overweight (OW) 7–9-year-old boys and girls, and to find associations between objectively measured PA levels and sedentary time with different body composition values.

Methods

Two hundred and seventy eight (142 boys and 136 girls) primary school children aged 7.9 ± 0.7 years participated in this study. Objective PA intensity and sedentary levels were measured over 7 days by accelerometry. Indices of total fat mass (body fat %, sum of skinfolds), fat distribution (waist-to-height ratio) and muscular component (fat free mass [FFM]) were calculated from measured anthropometric parameters.

Results

There were no differences (p > 0.05) in PA intensity levels and sedentary time between boys and girls as well as between NW and OW children. About 11 % of children met the current guidelines of at least 60 min per day of moderate-to-vigorous PA (MVPA). Sedentary time was positively and negatively associated (p < 0.05) with all body fat and FFM values, respectively. Moderate and vigorous PA along with MVPA were negatively and positively associated (p < 0.05) with all body fat and FFM indices, respectively.

Conclusions

The results of present study showed that about 11 % of primary school children were engaged in PA of at least 60 min of MVPA daily. While MVPA is negatively associated with fat mass indices and positively associated with FFM regardless of different confounders, sedentary time is negatively related to FFM and positively with fat mass values after adjusting for several confounders. These results suggest that higher MVPA level and lower sedentary time level are important in maintaining and developing healthy body composition in primary school children during growth.
Literature
1.
go back to reference Strong WB, Malina RM, Blimkie CJ, Daniels SR, Dishman RK, Gutin B, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146:732–7.CrossRefPubMed Strong WB, Malina RM, Blimkie CJ, Daniels SR, Dishman RK, Gutin B, et al. Evidence based physical activity for school-age youth. J Pediatr. 2005;146:732–7.CrossRefPubMed
2.
3.
go back to reference Cooper AR, Goodman A, Page AS, Sherar LB, Esliger DW, van Sluijs E, et al. Objectively measured physical activity and sedentary time in youth: the International children’s accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015;12:113.CrossRefPubMedPubMedCentral Cooper AR, Goodman A, Page AS, Sherar LB, Esliger DW, van Sluijs E, et al. Objectively measured physical activity and sedentary time in youth: the International children’s accelerometry database (ICAD). Int J Behav Nutr Phys Act. 2015;12:113.CrossRefPubMedPubMedCentral
4.
go back to reference Spittaels H, Van Cauwenberghe E, Verbestel V, De Meester F, Van Dyck D, Verloigne M, et al. Objectively measured sedentary time and physical activity time across the lifespan: a cross-sectional study in four age groups. Int J Behav Nutr Act. 2012;9:149.CrossRef Spittaels H, Van Cauwenberghe E, Verbestel V, De Meester F, Van Dyck D, Verloigne M, et al. Objectively measured sedentary time and physical activity time across the lifespan: a cross-sectional study in four age groups. Int J Behav Nutr Act. 2012;9:149.CrossRef
5.
go back to reference Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35:725–40.CrossRefPubMed Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35:725–40.CrossRefPubMed
6.
go back to reference WHO. Global Recommendations on Physical Activity for Health. Geneva: World Health Organization; 2010. WHO. Global Recommendations on Physical Activity for Health. Geneva: World Health Organization; 2010.
7.
go back to reference Ekelund U, Tomkinson GR, Armstrong N. What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br J Sports Med. 2011;45:859–65.CrossRefPubMed Ekelund U, Tomkinson GR, Armstrong N. What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br J Sports Med. 2011;45:859–65.CrossRefPubMed
8.
go back to reference Konstabel K, Veidebaum T, Verbestel V, Moreno LA, Bammann K, Tornaitis M. Objectively measured physical activity in European children: the IDEFICS study. Int J Obes. 2014;38:S135–43.CrossRef Konstabel K, Veidebaum T, Verbestel V, Moreno LA, Bammann K, Tornaitis M. Objectively measured physical activity in European children: the IDEFICS study. Int J Obes. 2014;38:S135–43.CrossRef
9.
go back to reference Kettner S, Kobel S, Fischbach N, Drenowatz C, Dreyhaupy J, Wirt T. Objectively determined physical activity levels of primary school children in south-west Germany. BMC Public Health. 2013;13:895.CrossRefPubMedPubMedCentral Kettner S, Kobel S, Fischbach N, Drenowatz C, Dreyhaupy J, Wirt T. Objectively determined physical activity levels of primary school children in south-west Germany. BMC Public Health. 2013;13:895.CrossRefPubMedPubMedCentral
10.
go back to reference Laguna M, Ruiz JR, Gallardo C, Garcia-Pastor T, Lara MT, Aznar S. Obesity and physical activity patterns in children and adolescents. J Paediatr Child Health. 2013;49:942–9.CrossRefPubMed Laguna M, Ruiz JR, Gallardo C, Garcia-Pastor T, Lara MT, Aznar S. Obesity and physical activity patterns in children and adolescents. J Paediatr Child Health. 2013;49:942–9.CrossRefPubMed
11.
go back to reference Sigmund E, Sigmundová D, Šnoblová R, Madarásová GA. Acti’Trainer-determined segmented moderate-to-vigorous physical activity patterns among normal-weight and overweight-to-obese Czech schoolchildren. Eur J Pediatr. 2014;173:321–9.CrossRefPubMedPubMedCentral Sigmund E, Sigmundová D, Šnoblová R, Madarásová GA. Acti’Trainer-determined segmented moderate-to-vigorous physical activity patterns among normal-weight and overweight-to-obese Czech schoolchildren. Eur J Pediatr. 2014;173:321–9.CrossRefPubMedPubMedCentral
12.
go back to reference Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22:1. Colley RC, Garriguet D, Janssen I, Craig CL, Clarke J, Tremblay MS. Physical activity of Canadian children and youth: Accelerometer results from the 2007 to 2009 Canadian Health Measures Survey. Health Rep. 2011;22:1.
13.
go back to reference Steele RM, van Sluijs EMF, Cassidy A, Griffin SJ, Ekelund U. Targeting sedentary time or moderate- and vigorous-intensity activity: independent relations with adiposity in a population-based sample of 10-y-old British children. Am J Clin Nutr. 2009;90:1185–92.CrossRefPubMed Steele RM, van Sluijs EMF, Cassidy A, Griffin SJ, Ekelund U. Targeting sedentary time or moderate- and vigorous-intensity activity: independent relations with adiposity in a population-based sample of 10-y-old British children. Am J Clin Nutr. 2009;90:1185–92.CrossRefPubMed
14.
go back to reference Troiano RP, Berrigan D, Dodd KW, Mȃsse LC, Tilert T, McDowell M. Physical Activity in the United States Measured by Accelerometer. Med Sci Sports Exerc. 2008;40:181–8.CrossRefPubMed Troiano RP, Berrigan D, Dodd KW, Mȃsse LC, Tilert T, McDowell M. Physical Activity in the United States Measured by Accelerometer. Med Sci Sports Exerc. 2008;40:181–8.CrossRefPubMed
15.
go back to reference Verloigne M, Van Lippevelde W, Maes L, Yildirim M, Chinapaw M, Manios Y, et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: an observational study within the ENERGY-project. Int J Behav Nutr Phys Act. 2012;9:34.CrossRefPubMedPubMedCentral Verloigne M, Van Lippevelde W, Maes L, Yildirim M, Chinapaw M, Manios Y, et al. Levels of physical activity and sedentary time among 10- to 12-year-old boys and girls across 5 European countries using accelerometers: an observational study within the ENERGY-project. Int J Behav Nutr Phys Act. 2012;9:34.CrossRefPubMedPubMedCentral
16.
go back to reference Ortega BF, Konstabel K, Pasquali E, Ruiz JR, Hurtig-Wennlöf A, Mäestu J et al. Objectively measured physical activity and sedentary time during childhood, adolescence and young adulthood: a cohort study. PloS ONE. 2013. doi: 10.1371/journal.pone.0060871. Ortega BF, Konstabel K, Pasquali E, Ruiz JR, Hurtig-Wennlöf A, Mäestu J et al. Objectively measured physical activity and sedentary time during childhood, adolescence and young adulthood: a cohort study. PloS ONE. 2013. doi: 10.​1371/​journal.​pone.​0060871.
17.
go back to reference Cain KL, Sallis JF, Conway TL, Van Dyck T, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10:437–50.PubMed Cain KL, Sallis JF, Conway TL, Van Dyck T, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10:437–50.PubMed
18.
go back to reference Nilsson A, Andersen LB, Ommundsen Y, Froberg K, Sardinha LB, Piehl-Aulin K, et al. Correlates of objectively assessed physical activity and sedentary time in children: a cross-sectional study (The European Youth Heart Study). BMC Public Health. 2009;9:322.CrossRefPubMedPubMedCentral Nilsson A, Andersen LB, Ommundsen Y, Froberg K, Sardinha LB, Piehl-Aulin K, et al. Correlates of objectively assessed physical activity and sedentary time in children: a cross-sectional study (The European Youth Heart Study). BMC Public Health. 2009;9:322.CrossRefPubMedPubMedCentral
19.
go back to reference Basterfield L, Reilly JK, Pearce MS, Parkinson KN, Adamson AJ, Reilly JJ, et al. Longitudinal associations between sports participation, body composition and physical activity from childhood to adolescence. J Sci Med Sport. 2015;18:178–82.CrossRefPubMedPubMedCentral Basterfield L, Reilly JK, Pearce MS, Parkinson KN, Adamson AJ, Reilly JJ, et al. Longitudinal associations between sports participation, body composition and physical activity from childhood to adolescence. J Sci Med Sport. 2015;18:178–82.CrossRefPubMedPubMedCentral
20.
go back to reference Deforche B, De Bourdeaudhuij I, D’hondt E, Cardon G. Objectively measured physical activity, physical activity related personality and body mass index in 6- to 10-yr-old children: a cross-sectional study. Int J Behav Nutr Phys Act. 2009;6:25.CrossRefPubMedPubMedCentral Deforche B, De Bourdeaudhuij I, D’hondt E, Cardon G. Objectively measured physical activity, physical activity related personality and body mass index in 6- to 10-yr-old children: a cross-sectional study. Int J Behav Nutr Phys Act. 2009;6:25.CrossRefPubMedPubMedCentral
21.
go back to reference Dorsey KB, Herrin J, Krumholtz HM. Patterns of moderate and vigorous physical activity in obese and overweight compared with non-overweight children. Int J Pediatr Obes. 2011. doi: 10.3109/17477166.2010.490586. Dorsey KB, Herrin J, Krumholtz HM. Patterns of moderate and vigorous physical activity in obese and overweight compared with non-overweight children. Int J Pediatr Obes. 2011. doi: 10.​3109/​17477166.​2010.​490586.
22.
go back to reference Goran MI. Measurement issues related to studies of childhood obesity: assessment of body composition, body fat distribution, physical activity and food intake. Pediatrics. 1998;101:505–18.CrossRefPubMed Goran MI. Measurement issues related to studies of childhood obesity: assessment of body composition, body fat distribution, physical activity and food intake. Pediatrics. 1998;101:505–18.CrossRefPubMed
23.
go back to reference Jiménez-Pavón D, Fernández-Vázquez A, Alexy U, Pedrero R, Cuenca-García M, Polito A. Association of objectively measured physical activity with body components in European adolescents. BMC Public Health. 2013;13:667.CrossRefPubMedPubMedCentral Jiménez-Pavón D, Fernández-Vázquez A, Alexy U, Pedrero R, Cuenca-García M, Polito A. Association of objectively measured physical activity with body components in European adolescents. BMC Public Health. 2013;13:667.CrossRefPubMedPubMedCentral
24.
go back to reference Loprinzi PD, Smit E, Cardinal BJ, Crespo C, Brodowicz G, Andersen R. Valid and invalid accelerometry data among children and adolescents: comparison across demographic, behavioural, and biological variables. Am J Health Promot. 2014;28:155–8.CrossRefPubMed Loprinzi PD, Smit E, Cardinal BJ, Crespo C, Brodowicz G, Andersen R. Valid and invalid accelerometry data among children and adolescents: comparison across demographic, behavioural, and biological variables. Am J Health Promot. 2014;28:155–8.CrossRefPubMed
25.
go back to reference Cole TJ, Bellizi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–3.CrossRefPubMedPubMedCentral Cole TJ, Bellizi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 2000;320:1240–3.CrossRefPubMedPubMedCentral
26.
go back to reference Marfell-Jones M, Olds T, Carter JEL. International standards for anthropometric assessments. ISAK; 2006. Marfell-Jones M, Olds T, Carter JEL. International standards for anthropometric assessments. ISAK; 2006.
27.
go back to reference Nagy E, Vicente-Rodriguez G, Manios Y, Beghin L, Iliescu C, Censi L, et al. Harmonization process and reliability assessment of anthropometric measurements in a multicenter study in adolescents. Int J Obes (Lond). 2008;32:S58–65. Nagy E, Vicente-Rodriguez G, Manios Y, Beghin L, Iliescu C, Censi L, et al. Harmonization process and reliability assessment of anthropometric measurements in a multicenter study in adolescents. Int J Obes (Lond). 2008;32:S58–65.
28.
go back to reference Utsal L, Tillmann V, Zilmer M, Mäestu J, Purge P, Jürimäe J, et al. Elevated serum IL-6, IL-8, MCP-1, CRP, and IFN-ɣ levels in 10- to 11-year-old boys with increased BMI. Horm Res Paediatr. 2012;78:31–9.CrossRefPubMed Utsal L, Tillmann V, Zilmer M, Mäestu J, Purge P, Jürimäe J, et al. Elevated serum IL-6, IL-8, MCP-1, CRP, and IFN-ɣ levels in 10- to 11-year-old boys with increased BMI. Horm Res Paediatr. 2012;78:31–9.CrossRefPubMed
29.
go back to reference Slaughter M, Lohman TG, Boileau RA, Horsvill CA, Stillman RJ, Van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60:709–23.PubMed Slaughter M, Lohman TG, Boileau RA, Horsvill CA, Stillman RJ, Van Loan MD, et al. Skinfold equations for estimation of body fatness in children and youth. Hum Biol. 1988;60:709–23.PubMed
30.
go back to reference Keefer DJ, Caputo JL, Tseh W. Waist-to-height ratio and body mass index as indicators of cardiovascular risk in youth. J Sch Health. 2013;83:805–9.CrossRefPubMed Keefer DJ, Caputo JL, Tseh W. Waist-to-height ratio and body mass index as indicators of cardiovascular risk in youth. J Sch Health. 2013;83:805–9.CrossRefPubMed
31.
go back to reference Chaput JP, Leduc G, Boyer C, Bélanger P, LeBlanc AG, Borghese MM et al. Objectively measured physical activity, sedentary time and sleep duration: independent and combined associations with adiposity in canadian children. Nutrition & Diabetes. 2014. doi: 10.1038/nutd.2014.14. Chaput JP, Leduc G, Boyer C, Bélanger P, LeBlanc AG, Borghese MM et al. Objectively measured physical activity, sedentary time and sleep duration: independent and combined associations with adiposity in canadian children. Nutrition & Diabetes. 2014. doi: 10.​1038/​nutd.​2014.​14.
32.
go back to reference Lätt E, Mäestu J, Ortega FB, Rääsk T, Jürimäe T, Jürimäe J. Vigorous physical activity rather than sedentary behaviour predicts overweight and obesity in pubertal boys: a 2-year follow-up study. Scand J Public Health. 2015;43:276–82.CrossRefPubMed Lätt E, Mäestu J, Ortega FB, Rääsk T, Jürimäe T, Jürimäe J. Vigorous physical activity rather than sedentary behaviour predicts overweight and obesity in pubertal boys: a 2-year follow-up study. Scand J Public Health. 2015;43:276–82.CrossRefPubMed
33.
go back to reference Vaitkeviciute D, Lätt E, Mäestu J, Jürimäe T, Saar M, Purge P, et al. Physical activity and bone mineral accrual in boys with different body mass parameters during puberty: a longitudinal study. PLoS One. 2014;9(10):e107759.CrossRefPubMedPubMedCentral Vaitkeviciute D, Lätt E, Mäestu J, Jürimäe T, Saar M, Purge P, et al. Physical activity and bone mineral accrual in boys with different body mass parameters during puberty: a longitudinal study. PLoS One. 2014;9(10):e107759.CrossRefPubMedPubMedCentral
34.
go back to reference Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity of children. J Sports Sci. 2008;26:1557–65.CrossRefPubMed Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective measures of physical activity of children. J Sports Sci. 2008;26:1557–65.CrossRefPubMed
35.
go back to reference Ivuskans A, Mäestu J, Jürimäe T, Lätt E, Purge P, Saar M, et al. Sedentary time has a negative influence on bone mineral parameters in peripubertal boys: a 1-year prospective study. J Bone Miner Metab. 2015;33:85–92.CrossRefPubMed Ivuskans A, Mäestu J, Jürimäe T, Lätt E, Purge P, Saar M, et al. Sedentary time has a negative influence on bone mineral parameters in peripubertal boys: a 1-year prospective study. J Bone Miner Metab. 2015;33:85–92.CrossRefPubMed
36.
go back to reference Hjorth MF, Chaput J-P, Ritz C, Dalskov S-M, Andersen R, Astrup A, et al. Fatness predicts decreased physical activity and increased sedentary time, but not vice versa: support from a longitudinal study in 8- to 11-year-old children. Int J Obes. 2014;38:959–65.CrossRef Hjorth MF, Chaput J-P, Ritz C, Dalskov S-M, Andersen R, Astrup A, et al. Fatness predicts decreased physical activity and increased sedentary time, but not vice versa: support from a longitudinal study in 8- to 11-year-old children. Int J Obes. 2014;38:959–65.CrossRef
37.
go back to reference Guinhouya BC, Samouda H, de Beaufort C. Level of physical activity among children and adolescents in Europe: a review of physical activity assessed objectively by accelerometry. Public Health. 2013;127:301–11.CrossRefPubMed Guinhouya BC, Samouda H, de Beaufort C. Level of physical activity among children and adolescents in Europe: a review of physical activity assessed objectively by accelerometry. Public Health. 2013;127:301–11.CrossRefPubMed
38.
go back to reference Basterfield L, Pearce MS, Adamson AJ, Frary JK, Parkinson KN, Wright CM. Physical activity, sedentary behaviour, and adiposity in English children. Am J Prev Med. 2012;42:445–51.CrossRefPubMed Basterfield L, Pearce MS, Adamson AJ, Frary JK, Parkinson KN, Wright CM. Physical activity, sedentary behaviour, and adiposity in English children. Am J Prev Med. 2012;42:445–51.CrossRefPubMed
39.
go back to reference Ridgers ND, Timperio A, Cerin E, Salmon J. Compensation of physical activity and sedentary time in primary school children. Med Sci Sports Exerc. 2014;46:1564–9.CrossRefPubMedPubMedCentral Ridgers ND, Timperio A, Cerin E, Salmon J. Compensation of physical activity and sedentary time in primary school children. Med Sci Sports Exerc. 2014;46:1564–9.CrossRefPubMedPubMedCentral
40.
go back to reference Pereira S, Gomes TN, Borges A, Santos D, Souza M, dos Santos FK, et al. Variability and stability in daily moderate-to-vigorous physical activity among 10 year old children. Int J Environ Res Public Health. 2015;12:9248–63.CrossRefPubMedPubMedCentral Pereira S, Gomes TN, Borges A, Santos D, Souza M, dos Santos FK, et al. Variability and stability in daily moderate-to-vigorous physical activity among 10 year old children. Int J Environ Res Public Health. 2015;12:9248–63.CrossRefPubMedPubMedCentral
41.
go back to reference LeBlanc AG, Katzmarzyk PT, Barreira TV, Broyles ST, Chaput J-P, Church TS, et al. Correlates of total sedentary time and screen time in 9–11 year-old children around the world: the international study of childhood obesity, lifestyle and the environment. PLoS One. 2015;10:e129622. doi:10.1371/journal.pone.0129622. LeBlanc AG, Katzmarzyk PT, Barreira TV, Broyles ST, Chaput J-P, Church TS, et al. Correlates of total sedentary time and screen time in 9–11 year-old children around the world: the international study of childhood obesity, lifestyle and the environment. PLoS One. 2015;10:e129622. doi:10.​1371/​journal.​pone.0129622.
42.
go back to reference Moliner-Urdiales D, Ortega FB, Vicente-Rodriguez G, Rey-Lopez JP, Gracia-Marco L, Widhalm K, et al. Association of physical activity with muscular strength and fat-free mass in adolescents: the HELENA study. Eur J Appl Physiol. 2010;109:1119–27.CrossRefPubMed Moliner-Urdiales D, Ortega FB, Vicente-Rodriguez G, Rey-Lopez JP, Gracia-Marco L, Widhalm K, et al. Association of physical activity with muscular strength and fat-free mass in adolescents: the HELENA study. Eur J Appl Physiol. 2010;109:1119–27.CrossRefPubMed
43.
go back to reference Aznar S, Naylor PJ, Silva P, Pérez M, Angulo T, Laguna M, et al. Patterns of physical activity in Spanish children: a descriptive pilot study. Child Care Health Dev. 2011;37:322–8.CrossRefPubMed Aznar S, Naylor PJ, Silva P, Pérez M, Angulo T, Laguna M, et al. Patterns of physical activity in Spanish children: a descriptive pilot study. Child Care Health Dev. 2011;37:322–8.CrossRefPubMed
44.
go back to reference Thompson AM, Campagna PD, Durant M, Murphy RJ, Rehman LA, Wadsworth LA. Are overweight students in grade 3,7, and 11 less physically active than their healthy weight counterparts? Int J Pediatr Obes. 2009;4:28–35.CrossRefPubMed Thompson AM, Campagna PD, Durant M, Murphy RJ, Rehman LA, Wadsworth LA. Are overweight students in grade 3,7, and 11 less physically active than their healthy weight counterparts? Int J Pediatr Obes. 2009;4:28–35.CrossRefPubMed
45.
go back to reference Kwon S, Janz KF, Burns TL, Levy SM. Association between light-intensity physical activity and adiposity in childhood. Pediatr Exerc Sci. 2011;23:218–29.PubMedPubMedCentral Kwon S, Janz KF, Burns TL, Levy SM. Association between light-intensity physical activity and adiposity in childhood. Pediatr Exerc Sci. 2011;23:218–29.PubMedPubMedCentral
46.
go back to reference Johannsen DL, Knuth ND, Huizenga R, Rood JC, Ravussin E, Hall KD. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J Clin Endocrinol Metab. 2012;97:2489–96.CrossRefPubMedPubMedCentral Johannsen DL, Knuth ND, Huizenga R, Rood JC, Ravussin E, Hall KD. Metabolic slowing with massive weight loss despite preservation of fat-free mass. J Clin Endocrinol Metab. 2012;97:2489–96.CrossRefPubMedPubMedCentral
47.
go back to reference Lohman TG. Assessment of body composition in children. Pediatr Exerc Sci. 1989;1:19–30. Lohman TG. Assessment of body composition in children. Pediatr Exerc Sci. 1989;1:19–30.
Metadata
Title
Objectively measured physical activity levels and sedentary time in 7–9-year-old Estonian schoolchildren: independent associations with body composition parameters
Authors
Eva-Maria Riso
Merike Kull
Kerli Mooses
Aave Hannus
Jaak Jürimäe
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2016
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-016-3000-6

Other articles of this Issue 1/2016

BMC Public Health 1/2016 Go to the issue