Skip to main content
Top
Published in: BMC Public Health 1/2016

Open Access 01-12-2015 | Research article

The descriptive epidemiology of total physical activity, muscle-strengthening exercises and sedentary behaviour among Australian adults – results from the National Nutrition and Physical Activity Survey

Authors: Jason A. Bennie, Zeljko Pedisic, Jannique G. Z. van Uffelen, Joanne Gale, Lauren K. Banting, Ineke Vergeer, Emmanuel Stamatakis, Adrian E. Bauman, Stuart J. H. Biddle

Published in: BMC Public Health | Issue 1/2016

Login to get access

Abstract

Background

The current Australia's Physical Activity and Sedentary Behaviour Guidelines recommend that adults engage in regular moderate-to-vigorous-intensity physical activity (MVPA) and strength training (ST), and minimise time spent in sedentary behaviours (SB). However, evidence about the specific individual and concurrent distribution of these behaviours in Australia is scarce. Therefore, the aim of this study was to determine the prevalence and sociodemographic correlates of MVPA, ST and SB in a national-representative sample of Australian adults.

Methods

Data were collected using face-to-face interviews, as part of the National Nutrition and Physical Activity Survey 2011–12. The population-weighted proportions meeting the MVPA (≥150 min/week), ST (≥2 sessions/week) and combined MVPA-ST guidelines, and proportions classified as having ‘low levels of SB’ (<480 min/day) were calculated, and their associations with selected sociodemographic and health-related variables were assessed using multiple logistic regression analyses. This was also done for those at potentially ‘high-risk’, defined as insufficient MVPA-ST and ‘high-sedentary’ behaviour.

Results

Out of 9345 participants (response rate = 77.0 %), aged 18–85 years, 52.6 % (95 % CI: 51.2 %–54.0 %), 18.6 % (95 % CI: 17.5 %–19.7 %) and 15.0 % (95 % CI: 13.9 %–16.1 %) met the MVPA, ST and combined MVPA-ST guidelines, respectively. Female gender, older age, low/medium education, poorer self-rated health, being classified as underweight or obese, and being a current smoker were independently associated with lower odds of meeting the MVPA, ST and combined MVPA-ST guidelines. A total of 78.9 % (95 % CI: 77.9 %–80.0 %) were classified as having low levels of SB. Females, older adults and those with lower education were more likely to report lower levels of SB, whilst those with poor self-rated health and obese individuals were less likely to report lower levels of SB (i.e. SB = ≥480 min/day). A total of 8.9 % (95 % CI: 8.1 %–9.6 %) were categorised as individuals at potentially ‘high-risk’. Those with poorer self-rated health, obese individuals, those aged 25–44, and current smokers were more likely to be in the ‘high risk’ group.

Conclusions

The large majority of Australian adults do not meet the full physical activity guidelines and/or report excessive SB. Our results call for public health interventions to reduce physical inactivity and SB in Australia, particularly among the subgroups at the highest risk of these unhealthy behaviours.
Literature
1.
go back to reference WHO. Global status report on noncommunicable diseases. Geneva, Switzerland: World Health Organization; 2014. WHO. Global status report on noncommunicable diseases. Geneva, Switzerland: World Health Organization; 2014.
2.
go back to reference Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43(1):1–2.PubMed Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med. 2009;43(1):1–2.PubMed
3.
go back to reference Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.PubMedCentralCrossRefPubMed Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380(9838):219–29.PubMedCentralCrossRefPubMed
4.
go back to reference WHO. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva, Switzerland: World Health Organization; 2009. WHO. Global health risks: mortality and burden of disease attributable to selected major risks. Geneva, Switzerland: World Health Organization; 2009.
5.
go back to reference Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57.CrossRefPubMed Hallal PC, Andersen LB, Bull FC, Guthold R, Haskell W, Ekelund U. Global physical activity levels: surveillance progress, pitfalls, and prospects. Lancet. 2012;380(9838):247–57.CrossRefPubMed
6.
go back to reference Booth FW, Gordon SE, Carlson CJ, Hamilton MT. Waging war on modern chronic diseases: primary prevention through exercise biology. J Appl Physiol (1985). 2000;88(2):774–87. Booth FW, Gordon SE, Carlson CJ, Hamilton MT. Waging war on modern chronic diseases: primary prevention through exercise biology. J Appl Physiol (1985). 2000;88(2):774–87.
7.
go back to reference WHO. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: World Health Organization; 2010. WHO. Global Recommendations on Physical Activity for Health. Geneva, Switzerland: World Health Organization; 2010.
8.
go back to reference Blair SN, LaMonte MJ, Nichaman MZ. The evolution of physical activity recommendations: how much is enough? The American journal of clinical nutrition. 2004;79(5):913s–20s.PubMed Blair SN, LaMonte MJ, Nichaman MZ. The evolution of physical activity recommendations: how much is enough? The American journal of clinical nutrition. 2004;79(5):913s–20s.PubMed
10.
go back to reference Westcott WL. Resistance training is medicine: effects of strength training on health. Current sports medicine reports. 2012;11(4):209–16.CrossRefPubMed Westcott WL. Resistance training is medicine: effects of strength training on health. Current sports medicine reports. 2012;11(4):209–16.CrossRefPubMed
11.
go back to reference Churilla JR, Magyari PM, Ford ES, Fitzhugh EC, Johnson TM. Muscular strengthening activity patterns and metabolic health risk among US adults*. Journal of diabetes. 2012;4(1):77–84.PubMedCentralCrossRefPubMed Churilla JR, Magyari PM, Ford ES, Fitzhugh EC, Johnson TM. Muscular strengthening activity patterns and metabolic health risk among US adults*. Journal of diabetes. 2012;4(1):77–84.PubMedCentralCrossRefPubMed
12.
go back to reference Grøntved A, Rimm EB, Willett WC, Andersen LB, Hu FB. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch Intern Med. 2012;172(17):1306–12.CrossRefPubMed Grøntved A, Rimm EB, Willett WC, Andersen LB, Hu FB. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch Intern Med. 2012;172(17):1306–12.CrossRefPubMed
13.
go back to reference Dâmaso AR, da Silveira Campos RM, Caranti DA, de Piano A, Fisberg M, Foschini D, et al. Aerobic plus resistance training was more effective in improving the visceral adiposity, metabolic profile and inflammatory markers than aerobic training in obese adolescents. J Sports Sci. 2014;32(15):1435–45.PubMed Dâmaso AR, da Silveira Campos RM, Caranti DA, de Piano A, Fisberg M, Foschini D, et al. Aerobic plus resistance training was more effective in improving the visceral adiposity, metabolic profile and inflammatory markers than aerobic training in obese adolescents. J Sports Sci. 2014;32(15):1435–45.PubMed
14.
go back to reference Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014;44(2):211–21.PubMedCentralCrossRefPubMed Mann S, Beedie C, Jimenez A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: review, synthesis and recommendations. Sports Med. 2014;44(2):211–21.PubMedCentralCrossRefPubMed
15.
go back to reference Sousa N, Mendes R, Abrantes C, Sampaio J, Oliveira J. Long‐term effects of aerobic training versus combined aerobic and resistance training in modifying cardiovascular disease risk factors in healthy elderly men. Geriatrics & gerontology international. 2013;13(4):928–35.CrossRef Sousa N, Mendes R, Abrantes C, Sampaio J, Oliveira J. Long‐term effects of aerobic training versus combined aerobic and resistance training in modifying cardiovascular disease risk factors in healthy elderly men. Geriatrics & gerontology international. 2013;13(4):928–35.CrossRef
16.
go back to reference Bauman, Chau J, Ding D, Bennie J. Too much sitting and cardio-metabolic risk: an update of epidemiological evidence. Current Cardiovascular Risk Reports. 2013;7(4):293–8.CrossRef Bauman, Chau J, Ding D, Bennie J. Too much sitting and cardio-metabolic risk: an update of epidemiological evidence. Current Cardiovascular Risk Reports. 2013;7(4):293–8.CrossRef
17.
go back to reference Dunstan DW, Salmon J, Owen N, Armstrong T, Zimmet PZ, Welborn TA, et al. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia. 2005;48(11):2254–61.CrossRefPubMed Dunstan DW, Salmon J, Owen N, Armstrong T, Zimmet PZ, Welborn TA, et al. Associations of TV viewing and physical activity with the metabolic syndrome in Australian adults. Diabetologia. 2005;48(11):2254–61.CrossRefPubMed
18.
go back to reference Ford ES, Schulze MB, Kroger J, Pischon T, Bergmann MM, Boeing H. Television watching and incident diabetes: findings from the European prospective investigation into cancer and nutrition-Potsdam study. Journal of diabetes. 2010;2(1):23–7.CrossRefPubMed Ford ES, Schulze MB, Kroger J, Pischon T, Bergmann MM, Boeing H. Television watching and incident diabetes: findings from the European prospective investigation into cancer and nutrition-Potsdam study. Journal of diabetes. 2010;2(1):23–7.CrossRefPubMed
19.
go back to reference Hu FB, Leitzmann MF, Stampfer MJ, Colditz GA, Willett WC, Rimm EB. Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men. Arch Intern Med. 2001;161(12):1542–8.CrossRefPubMed Hu FB, Leitzmann MF, Stampfer MJ, Colditz GA, Willett WC, Rimm EB. Physical activity and television watching in relation to risk for type 2 diabetes mellitus in men. Arch Intern Med. 2001;161(12):1542–8.CrossRefPubMed
20.
21.
go back to reference Koster A, Caserotti P, Patel KV, Matthews CE, Berrigan D, Van Domelen DR, et al. Association of sedentary time with mortality independent of moderate to vigorous physical activity. PLoS One. 2012;7(6):e37696.PubMedCentralCrossRefPubMed Koster A, Caserotti P, Patel KV, Matthews CE, Berrigan D, Van Domelen DR, et al. Association of sedentary time with mortality independent of moderate to vigorous physical activity. PLoS One. 2012;7(6):e37696.PubMedCentralCrossRefPubMed
22.
go back to reference Pavey TG, Peeters GG, Brown WJ. Sitting-time and 9-year all-cause mortality in older women. Br J Sports Med. 2015;49(2):95–9.CrossRefPubMed Pavey TG, Peeters GG, Brown WJ. Sitting-time and 9-year all-cause mortality in older women. Br J Sports Med. 2015;49(2):95–9.CrossRefPubMed
23.
go back to reference Stamatakis E. Association between sedentary behaviour and cardiometabolic risk factors in older adults. J Aging Phys Act. 2012;20:S301–1. Stamatakis E. Association between sedentary behaviour and cardiometabolic risk factors in older adults. J Aging Phys Act. 2012;20:S301–1.
24.
go back to reference van der Ploeg HP, Chey T, Korda RJ, Banks E, Bauman A. Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch Intern Med. 2012;172(6):494–500.CrossRefPubMed van der Ploeg HP, Chey T, Korda RJ, Banks E, Bauman A. Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch Intern Med. 2012;172(6):494–500.CrossRefPubMed
25.
go back to reference Wijndaele K, Brage S, Besson H, Khaw KT, Sharp SJ, Luben R, et al. Television viewing time independently predicts all-cause and cardiovascular mortality: the EPIC Norfolk study. Int J Epidemiol. 2011;40(1):150–9.CrossRefPubMed Wijndaele K, Brage S, Besson H, Khaw KT, Sharp SJ, Luben R, et al. Television viewing time independently predicts all-cause and cardiovascular mortality: the EPIC Norfolk study. Int J Epidemiol. 2011;40(1):150–9.CrossRefPubMed
26.
go back to reference Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32.CrossRefPubMed Biswas A, Oh PI, Faulkner GE, Bajaj RR, Silver MA, Mitchell MS, et al. Sedentary time and its association with risk for disease incidence, mortality, and hospitalization in adults: a systematic review and meta-analysis. Ann Intern Med. 2015;162(2):123–32.CrossRefPubMed
27.
go back to reference Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am J Prev Med. 2011;41(2):207–15.CrossRefPubMed Thorp AA, Owen N, Neuhaus M, Dunstan DW. Sedentary behaviors and subsequent health outcomes in adults a systematic review of longitudinal studies, 1996–2011. Am J Prev Med. 2011;41(2):207–15.CrossRefPubMed
28.
go back to reference Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia 2012. Wilmot EG, Edwardson CL, Achana FA, Davies MJ, Gorely T, Gray LJ, et al. Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia 2012.
30.
go back to reference Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.CrossRefPubMed Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–59.CrossRefPubMed
31.
go back to reference U.S Department of Health and Human Services: 2008 Physical activity guidelines for Americans. In. Washington, USA; 2008. U.S Department of Health and Human Services: 2008 Physical activity guidelines for Americans. In. Washington, USA; 2008.
32.
go back to reference UK Department of Health. In: Health Do, editor. UK physical activity guidelines. London, UK: UK Goverment; 2011. UK Department of Health. In: Health Do, editor. UK physical activity guidelines. London, UK: UK Goverment; 2011.
33.
go back to reference Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJ, Martin BW. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258–71.CrossRefPubMed Bauman AE, Reis RS, Sallis JF, Wells JC, Loos RJ, Martin BW. Correlates of physical activity: why are some people physically active and others not? Lancet. 2012;380(9838):258–71.CrossRefPubMed
34.
go back to reference Dumith SC, Hallal PC, Reis RS, Kohl 3rd HW. Worldwide prevalence of physical inactivity and its association with human development index in 76 countries. Prev Med. 2011;53(1–2):24–8.CrossRefPubMed Dumith SC, Hallal PC, Reis RS, Kohl 3rd HW. Worldwide prevalence of physical inactivity and its association with human development index in 76 countries. Prev Med. 2011;53(1–2):24–8.CrossRefPubMed
36.
go back to reference Carlson SA, Fulton JE, Schoenborn CA, Loustalot F. Trend and prevalence estimates based on the 2008 Physical activity guidelines for Americans. Am J Prev Med. 2010;39(4):305–13.CrossRefPubMed Carlson SA, Fulton JE, Schoenborn CA, Loustalot F. Trend and prevalence estimates based on the 2008 Physical activity guidelines for Americans. Am J Prev Med. 2010;39(4):305–13.CrossRefPubMed
37.
go back to reference Centers for Disease Control and Prevention. Adult participation in aerobic and muscle-strengthening physical activities--United States. MMWR Morbidity and mortality weekly report 2013. 2011;62(17):326–30. Centers for Disease Control and Prevention. Adult participation in aerobic and muscle-strengthening physical activities--United States. MMWR Morbidity and mortality weekly report 2013. 2011;62(17):326–30.
38.
go back to reference Loustalot F, Carlson SA, Kruger J, Buchner DM, Fulton JE. Muscle-strengthening activities and participation among adults in the United States. Res Q Exerc Sport. 2013;84(1):30–8.CrossRefPubMed Loustalot F, Carlson SA, Kruger J, Buchner DM, Fulton JE. Muscle-strengthening activities and participation among adults in the United States. Res Q Exerc Sport. 2013;84(1):30–8.CrossRefPubMed
39.
go back to reference Schoenborn CA, Stommel M. Adherence to the 2008 adult physical activity guidelines and mortality risk. Am J Prev Med. 2011;40(5):514–21.CrossRefPubMed Schoenborn CA, Stommel M. Adherence to the 2008 adult physical activity guidelines and mortality risk. Am J Prev Med. 2011;40(5):514–21.CrossRefPubMed
40.
go back to reference UK Health and Social Care Information Centre. In: Centre HaSCI, editor. Health Survey for England 2012: Summary of key findings. UK: Leeds; 2012. UK Health and Social Care Information Centre. In: Centre HaSCI, editor. Health Survey for England 2012: Summary of key findings. UK: Leeds; 2012.
41.
go back to reference Humphries B, Duncan MJ, Mummery WK. Prevalence and correlates of resistance training in a regional Australian population. Br J Sports Med. 2010;44(9):653–6.CrossRefPubMed Humphries B, Duncan MJ, Mummery WK. Prevalence and correlates of resistance training in a regional Australian population. Br J Sports Med. 2010;44(9):653–6.CrossRefPubMed
42.
go back to reference Merom D, Pye V, Macniven R, van der Ploeg H, Milat A, Sherrington C, et al. Prevalence and correlates of participation in fall prevention exercise/physical activity by older adults. Prev Med. 2012;55(6):613–7.CrossRefPubMed Merom D, Pye V, Macniven R, van der Ploeg H, Milat A, Sherrington C, et al. Prevalence and correlates of participation in fall prevention exercise/physical activity by older adults. Prev Med. 2012;55(6):613–7.CrossRefPubMed
43.
go back to reference Minges KE, Magliano DJ, Owen N, Daly RM, Salmon J, Shaw JE, et al. Associations of strength training with impaired glucose metabolism: the AusDiab Study. Med Sci Sports Exerc. 2013;45(2):299–303.CrossRefPubMed Minges KE, Magliano DJ, Owen N, Daly RM, Salmon J, Shaw JE, et al. Associations of strength training with impaired glucose metabolism: the AusDiab Study. Med Sci Sports Exerc. 2013;45(2):299–303.CrossRefPubMed
44.
go back to reference Schoenborn C, Adams PF, Peregoy JA. Health behaviors of adults: United States, 2008–2010. In. Edited by Statistics NCfH, vol. 10: Vital Health Stat; 2013. Schoenborn C, Adams PF, Peregoy JA. Health behaviors of adults: United States, 2008–2010. In. Edited by Statistics NCfH, vol. 10: Vital Health Stat; 2013.
45.
go back to reference CDC. Adult participation in aerobic and muscle-strengthening physical activities--United States. Centers for Disease Control and Prevention, MMWR Morb Mortal Wkly Rep 2013. 2011;62(17):326–30. CDC. Adult participation in aerobic and muscle-strengthening physical activities--United States. Centers for Disease Control and Prevention, MMWR Morb Mortal Wkly Rep 2013. 2011;62(17):326–30.
46.
go back to reference Bennie JA, Chau JY, van der Ploeg HP, Stamatakis E, Do A, Bauman A. The prevalence and correlates of sitting in European adults - a comparison of 32 Eurobarometer-participating countries. Int J Behav Nutr Phys Act. 2013;10(1):107.PubMedCentralCrossRefPubMed Bennie JA, Chau JY, van der Ploeg HP, Stamatakis E, Do A, Bauman A. The prevalence and correlates of sitting in European adults - a comparison of 32 Eurobarometer-participating countries. Int J Behav Nutr Phys Act. 2013;10(1):107.PubMedCentralCrossRefPubMed
47.
go back to reference Bauman A, Ainsworth BE, Sallis JF, Hagstromer M, Craig CL, Bull FC, et al. The descriptive epidemiology of sitting. A 20-country comparison using the International Physical Activity Questionnaire (IPAQ). Am J Prev Med. 2011;41(2):228–35.CrossRefPubMed Bauman A, Ainsworth BE, Sallis JF, Hagstromer M, Craig CL, Bull FC, et al. The descriptive epidemiology of sitting. A 20-country comparison using the International Physical Activity Questionnaire (IPAQ). Am J Prev Med. 2011;41(2):228–35.CrossRefPubMed
50.
go back to reference Heesch KC, Hill RL, van Uffelen JG, Brown WJ. Are Active Australia physical activity questions valid for older adults? J Sci Med Sport. 2011;14(3):233–7.CrossRefPubMed Heesch KC, Hill RL, van Uffelen JG, Brown WJ. Are Active Australia physical activity questions valid for older adults? J Sci Med Sport. 2011;14(3):233–7.CrossRefPubMed
51.
go back to reference Brown W, Burton N, Marshall A, Miller Y. Reliability and validity of a modified self-administered version of the Active Australia physical 2 activity survey in a sample of mid-age women. Aust N Z J Public Health. 2008;32(6):535–41.CrossRefPubMed Brown W, Burton N, Marshall A, Miller Y. Reliability and validity of a modified self-administered version of the Active Australia physical 2 activity survey in a sample of mid-age women. Aust N Z J Public Health. 2008;32(6):535–41.CrossRefPubMed
52.
go back to reference AIHW. In: Welfare AIoHa, editor. The Active Australia Survey: a Guide and Manual for Implementation, Analysis and Reporting. Canberra: ACT; 2003. AIHW. In: Welfare AIoHa, editor. The Active Australia Survey: a Guide and Manual for Implementation, Analysis and Reporting. Canberra: ACT; 2003.
53.
go back to reference Yore MM, Ham SA, Ainsworth BE, Kruger J, Reis JP, Kohl 3rd H, et al. Reliability and validity of the instrument used in BRFSS to assess physical activity. Med Sci Sports Exerc. 2007;39(8):1267–74.CrossRefPubMed Yore MM, Ham SA, Ainsworth BE, Kruger J, Reis JP, Kohl 3rd H, et al. Reliability and validity of the instrument used in BRFSS to assess physical activity. Med Sci Sports Exerc. 2007;39(8):1267–74.CrossRefPubMed
54.
go back to reference Schoenborn CA, Adams PF, JA P. Health behaviors of adults: United States, 2008–2010, Data from the National Health Survey. In: Vital and Health Statistics. Washington: DC Center for Health Statistics; 2013. Schoenborn CA, Adams PF, JA P. Health behaviors of adults: United States, 2008–2010, Data from the National Health Survey. In: Vital and Health Statistics. Washington: DC Center for Health Statistics; 2013.
55.
go back to reference Healy GN, Clark BK, Winkler EA, Gardiner PA, Brown WJ, Matthews CE. Measurement of adults’ sedentary time in population-based studies. Am J Prev Med. 2011;41(2):216–27.PubMedCentralCrossRefPubMed Healy GN, Clark BK, Winkler EA, Gardiner PA, Brown WJ, Matthews CE. Measurement of adults’ sedentary time in population-based studies. Am J Prev Med. 2011;41(2):216–27.PubMedCentralCrossRefPubMed
56.
go back to reference Marshall AL, Miller YD, Burton NW, Brown WJ. Measuring total and domain-specific sitting: a study of reliability and validity. Med Sci Sports Exerc. 2010;42(6):1094–102.PubMed Marshall AL, Miller YD, Burton NW, Brown WJ. Measuring total and domain-specific sitting: a study of reliability and validity. Med Sci Sports Exerc. 2010;42(6):1094–102.PubMed
57.
go back to reference Chau JY, Grunseit A, Midthjell K, Holmen J, Holmen TL, Bauman AE, Van der Ploeg HP. Sedentary behaviour and risk of mortality from all-causes and cardiometabolic diseases in adults: evidence from the HUNT3 population cohort. Br J Sports Med 2013. Chau JY, Grunseit A, Midthjell K, Holmen J, Holmen TL, Bauman AE, Van der Ploeg HP. Sedentary behaviour and risk of mortality from all-causes and cardiometabolic diseases in adults: evidence from the HUNT3 population cohort. Br J Sports Med 2013.
58.
go back to reference Brown WJ, Bauman AE, Bull FC, Burton NW. Development of evidence-based physical activity recommendations for adults (18–64 years): report prepared for the Australian Government Department of Health, August 2012. 2013. Brown WJ, Bauman AE, Bull FC, Burton NW. Development of evidence-based physical activity recommendations for adults (18–64 years): report prepared for the Australian Government Department of Health, August 2012. 2013.
59.
go back to reference Dunstan D, Healy G, Owen N, Salmon J, Ridgers N, Okley T, et al. Action area 5: Prolonged sitting. In: Blueprint for an active Australia. Melbourne: National Heart Foundation of Australia; 2014. Dunstan D, Healy G, Owen N, Salmon J, Ridgers N, Okley T, et al. Action area 5: Prolonged sitting. In: Blueprint for an active Australia. Melbourne: National Heart Foundation of Australia; 2014.
60.
go back to reference Bauman A, Ford I, Armstrong T. Trends in population levels of reported physical activity in Australia, 1997, 1999 and 2000. Canberra 2001. Bauman A, Ford I, Armstrong T. Trends in population levels of reported physical activity in Australia, 1997, 1999 and 2000. Canberra 2001.
61.
go back to reference Australian Institute of Health and Welfare. In: Welfare AIoHa, editor. Cardiovascular disease, diabetes and chronic kidney disease— Australian facts: Risk factors. 4th ed. Canberra: ACT; 2015. Australian Institute of Health and Welfare. In: Welfare AIoHa, editor. Cardiovascular disease, diabetes and chronic kidney disease— Australian facts: Risk factors. 4th ed. Canberra: ACT; 2015.
62.
go back to reference Nakamura Y, Harada K. Promotion of Strength Training. In: Physical Activity, Exercise, Sedentary Behavior and Health. 2015. Nakamura Y, Harada K. Promotion of Strength Training. In: Physical Activity, Exercise, Sedentary Behavior and Health. 2015.
63.
go back to reference Grøntved A, Pan A, Mekary RA, Stampfer M, Willett WC, Manson JE, et al. Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLoS Med. 2014;11(1):e1001587.PubMedCentralCrossRefPubMed Grøntved A, Pan A, Mekary RA, Stampfer M, Willett WC, Manson JE, et al. Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLoS Med. 2014;11(1):e1001587.PubMedCentralCrossRefPubMed
64.
go back to reference Flack KD, Davy KP, Hulver MW, Winett RA, Frisard MI, Davy BM. Aging, resistance training, and diabetes prevention. Journal of aging research 2001. 2011. Flack KD, Davy KP, Hulver MW, Winett RA, Frisard MI, Davy BM. Aging, resistance training, and diabetes prevention. Journal of aging research 2001. 2011.
65.
go back to reference Orr R, Raymond J, Fiatarone Singh M. Efficacy of progressive resistance training on balance performance in older adults: a systematic review of randomized controlled trials. Sports Med. 2008;38(4):317–43.CrossRefPubMed Orr R, Raymond J, Fiatarone Singh M. Efficacy of progressive resistance training on balance performance in older adults: a systematic review of randomized controlled trials. Sports Med. 2008;38(4):317–43.CrossRefPubMed
66.
go back to reference Nakamura Y, Harada K. Promtion of Strength Training. In: Kanosue K, Oshima S, Cao ZB, Oka K, editors. Physical Activity, Exercise, Sedentary Behavior and Health. Tokyo: Springer Verlag, Japan; 2015. p. 29–42.CrossRef Nakamura Y, Harada K. Promtion of Strength Training. In: Kanosue K, Oshima S, Cao ZB, Oka K, editors. Physical Activity, Exercise, Sedentary Behavior and Health. Tokyo: Springer Verlag, Japan; 2015. p. 29–42.CrossRef
67.
68.
go back to reference Trost S, Owen N, Bauman A, Sallis J, Brown W. Correlates of adult's participation in physical activity: review and update. Med Sci Sports Exerc. 2002;34(12):1996–2001.CrossRefPubMed Trost S, Owen N, Bauman A, Sallis J, Brown W. Correlates of adult's participation in physical activity: review and update. Med Sci Sports Exerc. 2002;34(12):1996–2001.CrossRefPubMed
69.
go back to reference Inoue M, Iso H, Yamamoto S, Kurahashi N, Iwasaki M, Sasazuki S, et al. Daily total physical activity level and premature death in men and women: results from a large-scale population-based cohort study in Japan (JPHC study). Ann Epidemiol. 2008;18(7):522–30.CrossRefPubMed Inoue M, Iso H, Yamamoto S, Kurahashi N, Iwasaki M, Sasazuki S, et al. Daily total physical activity level and premature death in men and women: results from a large-scale population-based cohort study in Japan (JPHC study). Ann Epidemiol. 2008;18(7):522–30.CrossRefPubMed
70.
go back to reference Rhodes RE, Mark RS, Temmel CP. Adult sedentary behavior: a systematic review. Am J Prev Med. 2012;42(3):e3–28.CrossRefPubMed Rhodes RE, Mark RS, Temmel CP. Adult sedentary behavior: a systematic review. Am J Prev Med. 2012;42(3):e3–28.CrossRefPubMed
71.
go back to reference Chastin SF, Buck C, Freiberger E, Murphy M, Brug J, Cardon G, et al. Systematic literature review of determinants of sedentary behaviour in older adults: a DEDIPAC study. Int J Behav Nutr Phys Act. 2015;12:127.PubMedCentralCrossRefPubMed Chastin SF, Buck C, Freiberger E, Murphy M, Brug J, Cardon G, et al. Systematic literature review of determinants of sedentary behaviour in older adults: a DEDIPAC study. Int J Behav Nutr Phys Act. 2015;12:127.PubMedCentralCrossRefPubMed
72.
go back to reference Sallis J, Owen N. Physical Activity and Behavioral Medicine. Thousand Oaks: Sage Publications; 1999. Sallis J, Owen N. Physical Activity and Behavioral Medicine. Thousand Oaks: Sage Publications; 1999.
73.
go back to reference Pedišić Ž, Bauman A. Accelerometer-based measures in physical activity surveillance: current practices and issues. British journal of sports medicine 2014:bjsports-2013-093407. Pedišić Ž, Bauman A. Accelerometer-based measures in physical activity surveillance: current practices and issues. British journal of sports medicine 2014:bjsports-2013-093407.
74.
go back to reference Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in sedentary time - beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–6.CrossRefPubMed Healy GN, Dunstan DW, Salmon J, Cerin E, Shaw JE, Zimmet PZ, et al. Breaks in sedentary time - beneficial associations with metabolic risk. Diabetes Care. 2008;31(4):661–6.CrossRefPubMed
75.
go back to reference Pedisic Z, Grunseit A, Ding D, Chau JY, Banks E, Stamatakis E, et al. High sitting time or obesity: Which came first? Bidirectional association in a longitudinal study of 31,787 Australian adults. Obesity (Silver Spring). 2014;22(10):2126–30.CrossRef Pedisic Z, Grunseit A, Ding D, Chau JY, Banks E, Stamatakis E, et al. High sitting time or obesity: Which came first? Bidirectional association in a longitudinal study of 31,787 Australian adults. Obesity (Silver Spring). 2014;22(10):2126–30.CrossRef
76.
go back to reference van Uffelen JG, Watson MJ, Dobson AJ, Brown WJ. Sitting time is associated with weight, but not with weight gain in mid-aged Australian women. Obesity (Silver Spring). 2010;18(9):1788–94.CrossRef van Uffelen JG, Watson MJ, Dobson AJ, Brown WJ. Sitting time is associated with weight, but not with weight gain in mid-aged Australian women. Obesity (Silver Spring). 2010;18(9):1788–94.CrossRef
Metadata
Title
The descriptive epidemiology of total physical activity, muscle-strengthening exercises and sedentary behaviour among Australian adults – results from the National Nutrition and Physical Activity Survey
Authors
Jason A. Bennie
Zeljko Pedisic
Jannique G. Z. van Uffelen
Joanne Gale
Lauren K. Banting
Ineke Vergeer
Emmanuel Stamatakis
Adrian E. Bauman
Stuart J. H. Biddle
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2016
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-016-2736-3

Other articles of this Issue 1/2016

BMC Public Health 1/2016 Go to the issue