Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

Within- and between-day associations between children’s sitting and physical activity time

Authors: Nicola D. Ridgers, Anna Timperio, Ester Cerin, Jo Salmon

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

The objective of this study was to examine whether increased levels of sitting time and physical activity in one period (within-day) or on one day (between-day) were predictive of lower levels in these behaviours in the following period or day among children.

Methods

Children aged 8–11 years from 8 primary schools located in Melbourne, Australia, wore an activPAL for 7 consecutive days (n = 235; 53 % boys). Sitting, standing and stepping time were derived for each day and for specific periods on weekdays and weekend days. Multilevel analyses were conducted using generalised linear latent and mixed models to estimate associations between temporally adjacent values (i.e. pairs of days; pairs of periods within-days) between the outcome variables.

Results

Significant associations were observed between temporally adjacent days and periods of the day. On any given day, an additional 10 min of stepping was associated with fewer minutes of stepping (~9 min; 95 % CI: −11.5 to −6.2 min) and standing (15 min; 95 % CI: −18.8 to −11.1 min) the following day. Greater time spent sitting during one period, regardless of being a weekday or weekend day, was associated with less time sitting and more time standing and stepping in the following period.

Conclusions

The direction of the results suggest that children appeared to compensate for increased sitting, standing, and stepping time both within- and between-days. The implications of such associations for the design and delivery of interventions require consideration.
Literature
1.
go back to reference Janssen I, LeBlanc A. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral Janssen I, LeBlanc A. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int J Behav Nutr Phys Act. 2010;7:40.CrossRefPubMedPubMedCentral
2.
go back to reference Salmon J, Tremblay MS, Marshall SJ, Hume C. Health risks, correlates, and interventions to reduce sedentary behavior in young people. Am J Prev Med. 2011;41(2):197–206.CrossRefPubMed Salmon J, Tremblay MS, Marshall SJ, Hume C. Health risks, correlates, and interventions to reduce sedentary behavior in young people. Am J Prev Med. 2011;41(2):197–206.CrossRefPubMed
3.
go back to reference Saunders TJ, Chaput J-P, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):53–61.CrossRefPubMed Saunders TJ, Chaput J-P, Tremblay MS. Sedentary behaviour as an emerging risk factor for cardiometabolic diseases in children and youth. Can J Diabetes. 2014;38(1):53–61.CrossRefPubMed
4.
go back to reference Department of Health. Does your child get 60 minutes of physical activity every day? Make your move - Sit less! Be active for life! Australia’s Physical Activity & Sedentary Behaviour Guidelines for Children (5–12 years). Commonwealth of Australia, Department of Health, 2014. Department of Health. Does your child get 60 minutes of physical activity every day? Make your move - Sit less! Be active for life! Australia’s Physical Activity & Sedentary Behaviour Guidelines for Children (5–12 years). Commonwealth of Australia, Department of Health, 2014.
6.
go back to reference Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.CrossRefPubMed Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Med Sci Sports Exerc. 2008;40(1):181–8.CrossRefPubMed
7.
go back to reference Scholes S, Mindell J. Health Survey for England 2012: Physical activity in children. London: The Health and Social Care Information Centre; 2013. Scholes S, Mindell J. Health Survey for England 2012: Physical activity in children. London: The Health and Social Care Information Centre; 2013.
8.
9.
go back to reference Reilly JJ. Can we modulate physical activity in children? Int J Obes. 2011;35(10):1266–9.CrossRef Reilly JJ. Can we modulate physical activity in children? Int J Obes. 2011;35(10):1266–9.CrossRef
10.
go back to reference Wilkin TJ. Can we modulate physical activity in children? No Int J Obes. 2011;35(10):1270–6.CrossRef Wilkin TJ. Can we modulate physical activity in children? No Int J Obes. 2011;35(10):1270–6.CrossRef
11.
go back to reference Stephens SK, Winkler EAH, Trost SG, Dunstan DW, Eakin EG, Chastin SFM, et al. Intervening to reduce workplace sitting time: how and when do changes to sitting time occur? Br J Sports Med. 2014;48(13):1037–42.CrossRefPubMed Stephens SK, Winkler EAH, Trost SG, Dunstan DW, Eakin EG, Chastin SFM, et al. Intervening to reduce workplace sitting time: how and when do changes to sitting time occur? Br J Sports Med. 2014;48(13):1037–42.CrossRefPubMed
12.
go back to reference Gomersall SR, Rowlands AV, English C, Maher C, Olds TS. The ActivityStat hypothesis: The concept, the evidence and the methodologies. Sports Med. 2013;43:135–49.CrossRefPubMed Gomersall SR, Rowlands AV, English C, Maher C, Olds TS. The ActivityStat hypothesis: The concept, the evidence and the methodologies. Sports Med. 2013;43:135–49.CrossRefPubMed
13.
go back to reference Wilkin TJ, Mallam KM, Metcalf BS, Jeffery AN, Voss LD. Variation in physical activity lies with the child, not his environment: evidence for an ‘activitystat’ in young children (EarlyBird 16). Int J Obes. 2006;30(7):1050–5.CrossRef Wilkin TJ, Mallam KM, Metcalf BS, Jeffery AN, Voss LD. Variation in physical activity lies with the child, not his environment: evidence for an ‘activitystat’ in young children (EarlyBird 16). Int J Obes. 2006;30(7):1050–5.CrossRef
14.
go back to reference Fremeaux AE, Mallam KM, Metcalf BS, Hosking J, Voss LD, Wilkin TJ. The impact of school-time activity on total physical activity: the activitystat hypothesis (EarlyBird 46). Int J Obes. 2011;35(10):1277–83.CrossRef Fremeaux AE, Mallam KM, Metcalf BS, Hosking J, Voss LD, Wilkin TJ. The impact of school-time activity on total physical activity: the activitystat hypothesis (EarlyBird 46). Int J Obes. 2011;35(10):1277–83.CrossRef
15.
go back to reference Baggett CD, Stevens J, Catellier DJ, Evenson KR, McMurray RG, He K, et al. Compensation or displacement of physical activity in middle-school girls: the Trial of Activity for Adolescent Girls. Int J Obes. 2010;37:1193–9.CrossRef Baggett CD, Stevens J, Catellier DJ, Evenson KR, McMurray RG, He K, et al. Compensation or displacement of physical activity in middle-school girls: the Trial of Activity for Adolescent Girls. Int J Obes. 2010;37:1193–9.CrossRef
16.
go back to reference Goodman A, Mackett RL, Paskins J. Activity compensation and activity synergy in British 8–13 year olds. Prev Med. 2011;53(4–5):293–8.CrossRefPubMed Goodman A, Mackett RL, Paskins J. Activity compensation and activity synergy in British 8–13 year olds. Prev Med. 2011;53(4–5):293–8.CrossRefPubMed
17.
go back to reference Dale D, Corbin CB, Dale KS. Restricting opportunities to be active during school time: Do children compensate by increasing physical activity levels after school? Res Q Exerc Sport. 2000;71:240–8.CrossRefPubMed Dale D, Corbin CB, Dale KS. Restricting opportunities to be active during school time: Do children compensate by increasing physical activity levels after school? Res Q Exerc Sport. 2000;71:240–8.CrossRefPubMed
18.
go back to reference Long MW, Sobol AM, Cradock AL, Subramanian SV, Blendon RJ, Gortmaker SL. School-day and overal physical activity among youth. Am J Prev Med. 2013;45(2):150–7.CrossRefPubMed Long MW, Sobol AM, Cradock AL, Subramanian SV, Blendon RJ, Gortmaker SL. School-day and overal physical activity among youth. Am J Prev Med. 2013;45(2):150–7.CrossRefPubMed
19.
go back to reference Morgan CF, Beighle A, Pangrazi RP. What are the contributory and compensatory relationships between physical education and physical activity in children? Res Q Exerc Sport. 2007;78(5):407–12.CrossRefPubMed Morgan CF, Beighle A, Pangrazi RP. What are the contributory and compensatory relationships between physical education and physical activity in children? Res Q Exerc Sport. 2007;78(5):407–12.CrossRefPubMed
20.
go back to reference Ridgers ND, Timperio A, Cerin E, Salmon J. Compensation of physical activity and sedentary time in primary school children. Med Sci Sports Exerc. 2014;46(8):1564–9.CrossRefPubMedPubMedCentral Ridgers ND, Timperio A, Cerin E, Salmon J. Compensation of physical activity and sedentary time in primary school children. Med Sci Sports Exerc. 2014;46(8):1564–9.CrossRefPubMedPubMedCentral
21.
go back to reference Network SBR. Letter to the Editor: Standardized use of the terms sedentary and sedentary behaviours. App Physiol Nutr Metab. 2012;37(3):540–2.CrossRef Network SBR. Letter to the Editor: Standardized use of the terms sedentary and sedentary behaviours. App Physiol Nutr Metab. 2012;37(3):540–2.CrossRef
22.
go back to reference Ridgers ND, Salmon J, Ridley K, O’Connell E, Arundell L, Timperio A. Agreement between activPAL and ActiGraph for assessing children’s sedentary time. Int J Behav Nutr Phys Act. 2012;9:15.CrossRefPubMedPubMedCentral Ridgers ND, Salmon J, Ridley K, O’Connell E, Arundell L, Timperio A. Agreement between activPAL and ActiGraph for assessing children’s sedentary time. Int J Behav Nutr Phys Act. 2012;9:15.CrossRefPubMedPubMedCentral
23.
go back to reference Hinckson EA WGH, Aminian S, Ross K. Week-to-week differences in children’s habitual activity and postural allocation as measured by the ActivPAL monitor. Gait Posture. 2013;38(4):663–7.CrossRefPubMed Hinckson EA WGH, Aminian S, Ross K. Week-to-week differences in children’s habitual activity and postural allocation as measured by the ActivPAL monitor. Gait Posture. 2013;38(4):663–7.CrossRefPubMed
24.
go back to reference Biddle SJ, Petrolini I, Pearson N. Interventions designed to reduce sedentary behaviours in young people: a review of reviews. Br J Sports Med. 2014;48(3):182–6.CrossRefPubMed Biddle SJ, Petrolini I, Pearson N. Interventions designed to reduce sedentary behaviours in young people: a review of reviews. Br J Sports Med. 2014;48(3):182–6.CrossRefPubMed
25.
go back to reference Ridgers ND, Salmon J, Timperio A. Too hot to move? Objectively assessed seasonal changes in Australian children’s physical activity. Int J Behav Nutr Phys Act. 2015;12:77.CrossRefPubMedPubMedCentral Ridgers ND, Salmon J, Timperio A. Too hot to move? Objectively assessed seasonal changes in Australian children’s physical activity. Int J Behav Nutr Phys Act. 2015;12:77.CrossRefPubMedPubMedCentral
27.
go back to reference Aminian S, Hinckson EA. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int J Behav Nutr Phys Act. 2012;9:119.CrossRefPubMedPubMedCentral Aminian S, Hinckson EA. Examining the validity of the ActivPAL monitor in measuring posture and ambulatory movement in children. Int J Behav Nutr Phys Act. 2012;9:119.CrossRefPubMedPubMedCentral
28.
go back to reference Stewart A, Marfell-Jones M. International Standards of Anthropometric Assessment. International Society for the Advancement of Kinanthropometry; 2006. Stewart A, Marfell-Jones M. International Standards of Anthropometric Assessment. International Society for the Advancement of Kinanthropometry; 2006.
29.
go back to reference Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437–50.CrossRefPubMed Cain KL, Sallis JF, Conway TL, Van Dyck D, Calhoon L. Using accelerometers in youth physical activity studies: a review of methods. J Phys Act Health. 2013;10(3):437–50.CrossRefPubMed
30.
go back to reference Mattocks C, Ness A, Leary S, Tilling K, Blair SN, Shield J, et al. Use of accelerometers in a large field-based study of children: Protocols, design issues, and effects on precision. J Phys Act Health. 2008;5(Supplement 1):S98–S111.CrossRefPubMed Mattocks C, Ness A, Leary S, Tilling K, Blair SN, Shield J, et al. Use of accelerometers in a large field-based study of children: Protocols, design issues, and effects on precision. J Phys Act Health. 2008;5(Supplement 1):S98–S111.CrossRefPubMed
31.
go back to reference Ridgers ND, Graves LE, Foweather L, et al. Examining influences on boy’s and girls’ physical activity patterns: the A-CLASS project. Pediatr Exerc Sci. 2010;22(4):638–50.CrossRefPubMed Ridgers ND, Graves LE, Foweather L, et al. Examining influences on boy’s and girls’ physical activity patterns: the A-CLASS project. Pediatr Exerc Sci. 2010;22(4):638–50.CrossRefPubMed
32.
go back to reference Riddoch CJ, Mattocks C, Deere K, Saunders J, Kirby J, Tilling K, et al. Objective measurement of levels and patterns of physical activity. Arch Dis Child. 2007;92:963–9.CrossRefPubMedPubMedCentral Riddoch CJ, Mattocks C, Deere K, Saunders J, Kirby J, Tilling K, et al. Objective measurement of levels and patterns of physical activity. Arch Dis Child. 2007;92:963–9.CrossRefPubMedPubMedCentral
33.
go back to reference Twisk JWR. Applied Multilevel Analysis. Cambridge: Cambridge University Press; 2006.CrossRef Twisk JWR. Applied Multilevel Analysis. Cambridge: Cambridge University Press; 2006.CrossRef
34.
go back to reference Rowlands AV. Methodological approaches for investigating the biological basis for physical activity in children. Pediatr Exerc Sci. 2009;21:273–8.CrossRefPubMed Rowlands AV. Methodological approaches for investigating the biological basis for physical activity in children. Pediatr Exerc Sci. 2009;21:273–8.CrossRefPubMed
35.
go back to reference Saunders TJ, Chaput J-P, Goldfield GS, Golley RC, Kenny GP, Doucet E, et al. Children and youth do not compensate for an imposed bout of prolonged sitting by reducing subsequent food intake or increasing physical activity levels: a randomised cross-over study. Br J Nutr. 2014;111:747–54.CrossRefPubMed Saunders TJ, Chaput J-P, Goldfield GS, Golley RC, Kenny GP, Doucet E, et al. Children and youth do not compensate for an imposed bout of prolonged sitting by reducing subsequent food intake or increasing physical activity levels: a randomised cross-over study. Br J Nutr. 2014;111:747–54.CrossRefPubMed
Metadata
Title
Within- and between-day associations between children’s sitting and physical activity time
Authors
Nicola D. Ridgers
Anna Timperio
Ester Cerin
Jo Salmon
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-2291-3

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue