Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

Molecular typing and drug sensitivity testing of Mycobacterium tuberculosis isolated by a community-based survey in Ethiopia

Authors: Muluwork Getahun, Gobena Ameni, Abebaw Kebede, Zelalem Yaregal, Elena Hailu, Grimay Medihn, Daniel Demssie, Feven Girmachew, Yetnebersh Fiseha, Abyot Meaza, Nathneal Dirse, Mulualem Agonafir, Feleke Dana, Fasil Tsegaye, Zeleke Alebachew, Almaz Abebe, Amha Kebede, Eshetu Lemma

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

The identification of circulating TB strains in the community and drug sensitivity patterns is essential for the tuberculosis control program. This study was undertaken to identify M. tuberculosis strains circulating in selected communities in Ethiopia as well as to evaluate the drug sensitivity pattern of these strains.

Method

This study was a continuation of the Ethiopian National TB Prevalence Survey that was conducted between 2010 and 2011. Culture-positive isolates of M. tuberculosis from previous study were typed using region of difference (RD) 9-based polymerase chain reaction (PCR) and spoligotyping. Drug sensitivity testing was conducted using the indirect proportion method on Lowenstein-Jensen media.

Result

All 92 isolates were confirmed as M. tuberculosis by RD9-based PCR and spoligotyping of 91 of these isolates leds to the identification of 41 spoligotype patterns. Spoligotype revealed higher diversity (45 %) and among this 65.8 % (27/41) were not previously reported. The strains were grouped into 14 clusters consisting of 2–15 isolates. The dominant strains were SIT53, SIT149 and SIT37 consisting of 15, 11, and 9 isolates, respectively. Our study reveals 70 % (64/91) clustered strains and only 39.1 % (25/64) occurred within the same Kebele. Further assignment of the strains to the lineages showed that 74.7 % (68/91) belonged to Euro-American lineage, 18.6 % (17/91) to East Africa Indian lineage and the remaining 6.5 % (6/91) belonged to Indo-oceanic lineage. Valid drug susceptibility test results were available for 90 of the 92 isolates. Mono-resistance was observed in 27.7 % (25/90) and poly-resistance in 5.5 % (5/90) of the isolates. Moreover, multi-drug resistance (MDR-TB) was detected in 4.4 % of the isolates whilst the rest (60/90) were susceptible to all drugs. The highest level of mono-resistance, 26.6 % (24/90), was observed for streptomycin with majority (91.1 %) of streptomycin mono-resistant strains belonging to the Euro-American lineage.

Conclusion

In this study, the strains of M. tuberculosis circulating in selected sites of Ethiopia were identified along with the drug sensitivity patterns. Thus, these findings are useful for the TB Control Program of the country.
Literature
1.
go back to reference World Health Organization Global Tuberculosis Report. Who, Geneva: Annual Report; 2014. World Health Organization Global Tuberculosis Report. Who, Geneva: Annual Report; 2014.
2.
go back to reference Kebede AH, Alebachew Z, Tsegaye F, Lemma E, Abebe A, Agonafir M, et al. The first population-based national tuberculosis prevalence survey in Ethiopia, 2010–2011. Int J Tuberc Lung Dis. 2014;18:635–9.CrossRefPubMed Kebede AH, Alebachew Z, Tsegaye F, Lemma E, Abebe A, Agonafir M, et al. The first population-based national tuberculosis prevalence survey in Ethiopia, 2010–2011. Int J Tuberc Lung Dis. 2014;18:635–9.CrossRefPubMed
3.
go back to reference World Health Organization Anti-Tuberculosis Drug Resistance in the World: Fourth Global Report; 2008. World Health Organization Anti-Tuberculosis Drug Resistance in the World: Fourth Global Report; 2008.
4.
go back to reference Kantor IND, Kim SJ, Frieden T: Laboratory Services in Tuberculosis Control Culture Part III. World Health Organization 1998, 57–58. Kantor IND, Kim SJ, Frieden T: Laboratory Services in Tuberculosis Control Culture Part III. World Health Organization 1998, 57–58.
5.
go back to reference Abe C, Hirano K, Tomiyama T. Simple and Rapid Identification of the Mycobacterium tuberculosis Complex by Immunochromatographic Assay Using Anti-MPB64 Monoclonal Antibodies. J Clin Microbiol. 1999;37:3693–7.PubMedPubMedCentral Abe C, Hirano K, Tomiyama T. Simple and Rapid Identification of the Mycobacterium tuberculosis Complex by Immunochromatographic Assay Using Anti-MPB64 Monoclonal Antibodies. J Clin Microbiol. 1999;37:3693–7.PubMedPubMedCentral
6.
7.
go back to reference Nakajima C, Rahim Z, Fukushima Y, Sugawara I, van de Zanden AGM, Tamaru A, et al. Identification of Mycobacterium tuberculosis clinical isolates in Bangladesh by a species distinguishable multiplex PCR. BioMedCenter Infect Dis. 2010;10(118):1–7. Nakajima C, Rahim Z, Fukushima Y, Sugawara I, van de Zanden AGM, Tamaru A, et al. Identification of Mycobacterium tuberculosis clinical isolates in Bangladesh by a species distinguishable multiplex PCR. BioMedCenter Infect Dis. 2010;10(118):1–7.
8.
go back to reference Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35(4):907–14.PubMedPubMedCentral Kamerbeek J, Schouls L, Kolk A, van Agterveld M, van Soolingen D, Kuijper S, et al. Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol. 1997;35(4):907–14.PubMedPubMedCentral
9.
go back to reference Molhuizen HOF, Bunschoten AE, Schouls LM, van Embden J. Rapid detection and simultaneous strain differentiation of Mycobacterium tuberculosis complex bacteria by spoligotyping. Methods Mol Biol. 1998;101:381–94.PubMed Molhuizen HOF, Bunschoten AE, Schouls LM, van Embden J. Rapid detection and simultaneous strain differentiation of Mycobacterium tuberculosis complex bacteria by spoligotyping. Methods Mol Biol. 1998;101:381–94.PubMed
10.
go back to reference Kent PT, and Kubica GP, Public health mycobacteriology a guide for the level III laboratory. Centers for Disease control 1985: 159–185. Kent PT, and Kubica GP, Public health mycobacteriology a guide for the level III laboratory. Centers for Disease control 1985: 159–185.
11.
go back to reference Swaminathan S, Ramachandran R, Baskaran G, Paramasivan CN, Ramanathan U, Venkatesan P, et al. Risk of development of tuberculosis in HIV- infected patients. Int J Tuberc Lung Dis. 2000;4:839–44.PubMed Swaminathan S, Ramachandran R, Baskaran G, Paramasivan CN, Ramanathan U, Venkatesan P, et al. Risk of development of tuberculosis in HIV- infected patients. Int J Tuberc Lung Dis. 2000;4:839–44.PubMed
12.
go back to reference Cataldi A, Romano MI. Tuberculosis caused by Other Members of the M. tuberculosis Complex. In: Palomino JC, Leão SC, Ritacco V, editors. Tuberculosis 2007 From basic science to patient care. Belgium: Bernd Sebastian Kamps and Patricia Bourcillier; 2007. p. 283–314. Cataldi A, Romano MI. Tuberculosis caused by Other Members of the M. tuberculosis Complex. In: Palomino JC, Leão SC, Ritacco V, editors. Tuberculosis 2007 From basic science to patient care. Belgium: Bernd Sebastian Kamps and Patricia Bourcillier; 2007. p. 283–314.
13.
go back to reference Rodríguez E, Sánchez LP, Pérez S, Herrera L, Jiménez MS, Samper S, et al. Human tuberculosis due to Mycobacterium bovis and M. caprae in Spain, 2004–2007. Int J Tuberc Lung Dis. 2009;13(12):1536–41.PubMed Rodríguez E, Sánchez LP, Pérez S, Herrera L, Jiménez MS, Samper S, et al. Human tuberculosis due to Mycobacterium bovis and M. caprae in Spain, 2004–2007. Int J Tuberc Lung Dis. 2009;13(12):1536–41.PubMed
14.
go back to reference Regassa A, Medhin G, Ameni G. Bovine tuberculosis 302 is more prevalent in cattle owned by farmers with active tuberculosis in central Ethiopia. Elsevier. 2007;178(2008):119–25. Regassa A, Medhin G, Ameni G. Bovine tuberculosis 302 is more prevalent in cattle owned by farmers with active tuberculosis in central Ethiopia. Elsevier. 2007;178(2008):119–25.
15.
go back to reference Shitaye JE, Tsegaye W, Pavlik I. Bovine tuberculosis infection in animal and human populations in Ethiopia: a review. Vet Med. 2007;52:317–32. Review Article. Shitaye JE, Tsegaye W, Pavlik I. Bovine tuberculosis infection in animal and human populations in Ethiopia: a review. Vet Med. 2007;52:317–32. Review Article.
16.
go back to reference Braden CR, Templeton GL, Cave MD, Valway S, Onorato IM, Castro KG, et al. Interpretation of restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolates from a state with a large rural population. J Infect Dis. 1997;175:1446–52.CrossRefPubMed Braden CR, Templeton GL, Cave MD, Valway S, Onorato IM, Castro KG, et al. Interpretation of restriction fragment length polymorphism analysis of Mycobacterium tuberculosis isolates from a state with a large rural population. J Infect Dis. 1997;175:1446–52.CrossRefPubMed
17.
go back to reference Ellis BA, Crawford JT, Braden CR, McNabb SJN, Moore M, Kammerer S, et al. Molecular epidemiology of tuberculosis in a sentinel surveillance population. Emerg Infect Dis. 2002;8:1197–209.CrossRefPubMedPubMedCentral Ellis BA, Crawford JT, Braden CR, McNabb SJN, Moore M, Kammerer S, et al. Molecular epidemiology of tuberculosis in a sentinel surveillance population. Emerg Infect Dis. 2002;8:1197–209.CrossRefPubMedPubMedCentral
18.
go back to reference Paramasivan CN, Bhaskarair K, Venkataraman P, Chandrasekaran V, Narayanan PR. Surveillance of drug resistance in tuberculosis in the state of Tamil Nadu. Indian J Tuberc. 2000;47:27–33. Paramasivan CN, Bhaskarair K, Venkataraman P, Chandrasekaran V, Narayanan PR. Surveillance of drug resistance in tuberculosis in the state of Tamil Nadu. Indian J Tuberc. 2000;47:27–33.
19.
go back to reference Mendoza MT, Tan-Torres T, Ang CF, Arciaga R, Elona F, Retuta M, et al. Community-Based surveillance for drug resistance of Mycobacterium tuberculosis in selected areas in the Philippines. Phil J Microbiol Infect Dis. 2002;3:169–75. Mendoza MT, Tan-Torres T, Ang CF, Arciaga R, Elona F, Retuta M, et al. Community-Based surveillance for drug resistance of Mycobacterium tuberculosis in selected areas in the Philippines. Phil J Microbiol Infect Dis. 2002;3:169–75.
20.
go back to reference Merza MA, Farnia P, Tabarsi P, Khazampour M, Masjedi MR, Velayati AA. Anti tuberculosis drug resistance and associated risk factors in a tertiary level TB centre in Iran: a retrospective analysis. J Infect Dev Ctries. 2011;5(7):511–9.CrossRefPubMed Merza MA, Farnia P, Tabarsi P, Khazampour M, Masjedi MR, Velayati AA. Anti tuberculosis drug resistance and associated risk factors in a tertiary level TB centre in Iran: a retrospective analysis. J Infect Dev Ctries. 2011;5(7):511–9.CrossRefPubMed
Metadata
Title
Molecular typing and drug sensitivity testing of Mycobacterium tuberculosis isolated by a community-based survey in Ethiopia
Authors
Muluwork Getahun
Gobena Ameni
Abebaw Kebede
Zelalem Yaregal
Elena Hailu
Grimay Medihn
Daniel Demssie
Feven Girmachew
Yetnebersh Fiseha
Abyot Meaza
Nathneal Dirse
Mulualem Agonafir
Feleke Dana
Fasil Tsegaye
Zeleke Alebachew
Almaz Abebe
Amha Kebede
Eshetu Lemma
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-2105-7

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue