Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

Temporal patterns of physical activity and sedentary behavior in 10–14 year-old children on weekdays

Authors: Stijn De Baere, Johan Lefevre, Kristine De Martelaer, Renaat Philippaerts, Jan Seghers

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

An important but often ignored aspect of physical activity (PA) and sedentary behavior (SB) is the chronological succession of activities, or temporal pattern. The main purposes of this study were (1) to investigate when certain types of PA and SB compete against each other during the course of the day and (2) compare intensity- and domain-specific activity levels during different day-segments.

Methods

The study sample consists of 211 children aged 10–14, recruited from 15 primary and 15 secondary schools. PA was assessed combining the SenseWear Mini Armband (SWM) with an electronic activity diary. The intensity- and domain-specific temporal patterns were plotted and PA differences between different day-segments (i.e., morning, school, early evening and late evening) were examined using repeated-measures ANCOVA models.

Results

Physical activity level (PAL) was highest during the early evening (2.51 METSWM) and school hours (2.49 METSWM); the late evening segment was significantly less active (2.21 METSWM) and showed the highest proportion of sedentary time (54 % of total time-use). Throughout the different day-segments, several domains of PA and SB competed with each other. During the critical early-evening segment, screentime (12 % of time-use) and homework (10 %) were dominant compared to activity domains of sports (4 %) and active leisure (3 %). The domain of active travel competed directly with motor travel during the morning (5 % and 6 % respectively) and early-evening segment (both 8 %).

Conclusions

Throughout the day, different aspects of PA and SB go in competition with each other, especially during the time period immediately after school. Detailed information on the temporal patterns of PA and SB of children could help health professionals to develop more effective PA interventions and promotion strategies. By making adaptations to the typical day schedule of children (e.g., through the introduction of extra-curricular PA after school hours), their daily activity levels might improve.
Appendix
Available only for authorised users
Literature
1.
go back to reference Boreham CA, McKay HA. Physical activity in childhood and bone health. Br J Sports Med. 2011;45:877–9.CrossRefPubMed Boreham CA, McKay HA. Physical activity in childhood and bone health. Br J Sports Med. 2011;45:877–9.CrossRefPubMed
2.
go back to reference Biddle SJ, Asare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. 2011;45:886–95.CrossRefPubMed Biddle SJ, Asare M. Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med. 2011;45:886–95.CrossRefPubMed
3.
go back to reference Hills AP, Andersen LB, Byrne NM. Physical activity and obesity in children. Br J Sports Med. 2011;45:866–70.CrossRefPubMed Hills AP, Andersen LB, Byrne NM. Physical activity and obesity in children. Br J Sports Med. 2011;45:866–70.CrossRefPubMed
4.
go back to reference Andersen LB, Riddoch C, Kriemler S, Hills AP. Physical activity and cardiovascular risk factors in children. Br J Sports Med. 2011;45:871–6.CrossRefPubMed Andersen LB, Riddoch C, Kriemler S, Hills AP. Physical activity and cardiovascular risk factors in children. Br J Sports Med. 2011;45:871–6.CrossRefPubMed
5.
go back to reference Dumith SC, Gigante DP, Domingues MR, Kohl 3rd HW. Physical activity change during adolescence: a systematic review and a pooled analysis. Int J Epidemiol. 2011;40:685–98.CrossRefPubMed Dumith SC, Gigante DP, Domingues MR, Kohl 3rd HW. Physical activity change during adolescence: a systematic review and a pooled analysis. Int J Epidemiol. 2011;40:685–98.CrossRefPubMed
6.
go back to reference Van Mechelen W, Twisk JW, Post GB, Snel J, Kemper HC. Physical activity of young people: the Amsterdam longitudinal growth and health study. Med Sci Sports Exerc. 2000;32:1610–6.CrossRefPubMed Van Mechelen W, Twisk JW, Post GB, Snel J, Kemper HC. Physical activity of young people: the Amsterdam longitudinal growth and health study. Med Sci Sports Exerc. 2000;32:1610–6.CrossRefPubMed
7.
go back to reference Corder K, Sharp SJ, Atkin AJ, Griffin SJ, Jones AP, Ekelund U, et al. Change in objectively measured physical activity during the transition to adolescence. Br J Sports Med. 2014;49:730–6.CrossRef Corder K, Sharp SJ, Atkin AJ, Griffin SJ, Jones AP, Ekelund U, et al. Change in objectively measured physical activity during the transition to adolescence. Br J Sports Med. 2014;49:730–6.CrossRef
8.
go back to reference Arundell L, Ridgers ND, Veitch J, Salmon J, Hinkley T, Timperio A. 5-year changes in afterschool physical activity and sedentary behavior. Am J Prev Med. 2013;44:605–11.CrossRefPubMed Arundell L, Ridgers ND, Veitch J, Salmon J, Hinkley T, Timperio A. 5-year changes in afterschool physical activity and sedentary behavior. Am J Prev Med. 2013;44:605–11.CrossRefPubMed
9.
go back to reference Rutten C, Boen F, Seghers J. Changes in physical activity and sedentary behavior during the transition from elementary to secondary school. J Phys Act Health. 2014;11:1607–13.CrossRefPubMed Rutten C, Boen F, Seghers J. Changes in physical activity and sedentary behavior during the transition from elementary to secondary school. J Phys Act Health. 2014;11:1607–13.CrossRefPubMed
10.
go back to reference Cooper AR, Jago R, Southward EF, Page AS. Active travel and physical activity across the school transition: the PEACH project. Med Sci Sports Exerc. 2012;44:1890–7.CrossRefPubMed Cooper AR, Jago R, Southward EF, Page AS. Active travel and physical activity across the school transition: the PEACH project. Med Sci Sports Exerc. 2012;44:1890–7.CrossRefPubMed
11.
go back to reference Jago R, Page AS, Cooper AR. Friends and physical activity during the transition from primary to secondary school. Med Sci Sports Exerc. 2012;44:111–7.CrossRefPubMed Jago R, Page AS, Cooper AR. Friends and physical activity during the transition from primary to secondary school. Med Sci Sports Exerc. 2012;44:111–7.CrossRefPubMed
12.
go back to reference Spittaels H, Van Cauwenberghe E, Verbestel V, De Meester F, Van Dyck D, Verloigne M, et al. Objectively measured sedentary time and physical activity time across the lifespan: a cross-sectional study in four age groups. Int J Behav Nutr Phys Act. 2012;9:149.CrossRefPubMedPubMedCentral Spittaels H, Van Cauwenberghe E, Verbestel V, De Meester F, Van Dyck D, Verloigne M, et al. Objectively measured sedentary time and physical activity time across the lifespan: a cross-sectional study in four age groups. Int J Behav Nutr Phys Act. 2012;9:149.CrossRefPubMedPubMedCentral
13.
go back to reference Gebremariam MK, Totland TH, Andersen LF, Bergh IH, Bjelland M, Grydeland M, et al. Stability and change in screen-based sedentary behaviours and associated factors among Norwegian children in the transition between childhood and adolescence. BMC Public Health. 2012;12:104.CrossRefPubMedPubMedCentral Gebremariam MK, Totland TH, Andersen LF, Bergh IH, Bjelland M, Grydeland M, et al. Stability and change in screen-based sedentary behaviours and associated factors among Norwegian children in the transition between childhood and adolescence. BMC Public Health. 2012;12:104.CrossRefPubMedPubMedCentral
14.
go back to reference Teixeira e Seabra AF, Maia JA, Mendonca DM, Thomis M, Caspersen CJ, Fulton JE. Age and sex differences in physical activity of Portuguese adolescents. Med Sci Sports Exerc. 2008;40:65–70.CrossRefPubMed Teixeira e Seabra AF, Maia JA, Mendonca DM, Thomis M, Caspersen CJ, Fulton JE. Age and sex differences in physical activity of Portuguese adolescents. Med Sci Sports Exerc. 2008;40:65–70.CrossRefPubMed
15.
go back to reference Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34:350–5.CrossRefPubMed Trost SG, Pate RR, Sallis JF, Freedson PS, Taylor WC, Dowda M, et al. Age and gender differences in objectively measured physical activity in youth. Med Sci Sports Exerc. 2002;34:350–5.CrossRefPubMed
16.
go back to reference Riddoch CJ, Bo AL, Wedderkopp N, Harro M, Klasson-Heggebo L, Sardinha LB, et al. Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc. 2004;36:86–92.CrossRefPubMed Riddoch CJ, Bo AL, Wedderkopp N, Harro M, Klasson-Heggebo L, Sardinha LB, et al. Physical activity levels and patterns of 9- and 15-yr-old European children. Med Sci Sports Exerc. 2004;36:86–92.CrossRefPubMed
17.
go back to reference Wareham NJ, Rennie KL. The assessment of physical activity in individuals and populations: why try to be more precise about how physical activity is assessed? Int J Obes Relat Metab Disord. 1998;22 Suppl 2:S30–8.PubMed Wareham NJ, Rennie KL. The assessment of physical activity in individuals and populations: why try to be more precise about how physical activity is assessed? Int J Obes Relat Metab Disord. 1998;22 Suppl 2:S30–8.PubMed
18.
go back to reference Barisic A, Leatherdale ST, Kreiger N. Importance of frequency, intensity, time and type (FITT) in physical activity assessment for epidemiological research. Can J Public Health. 2011;102:174–5.PubMed Barisic A, Leatherdale ST, Kreiger N. Importance of frequency, intensity, time and type (FITT) in physical activity assessment for epidemiological research. Can J Public Health. 2011;102:174–5.PubMed
19.
go back to reference Vanhees L, Lefevre J, Philippaerts R, Martens M, Huygens W, Troosters T, et al. How to assess physical activity? How to assess physical fitness? Eur J Cardiovasc Prev Rehabil. 2005;12:102–14.CrossRefPubMed Vanhees L, Lefevre J, Philippaerts R, Martens M, Huygens W, Troosters T, et al. How to assess physical activity? How to assess physical fitness? Eur J Cardiovasc Prev Rehabil. 2005;12:102–14.CrossRefPubMed
20.
go back to reference Biddle SJ, Marshall SJ, Gorely T, Cameron N. Temporal and environmental patterns of sedentary and active behaviors during adolescents’ leisure time. Int J Behav Med. 2009;16:278–86.CrossRefPubMed Biddle SJ, Marshall SJ, Gorely T, Cameron N. Temporal and environmental patterns of sedentary and active behaviors during adolescents’ leisure time. Int J Behav Med. 2009;16:278–86.CrossRefPubMed
21.
go back to reference Ekelund U, Tomkinson G, Armstrong N. What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br J Sports Med. 2011;45:859–65.CrossRefPubMed Ekelund U, Tomkinson G, Armstrong N. What proportion of youth are physically active? Measurement issues, levels and recent time trends. Br J Sports Med. 2011;45:859–65.CrossRefPubMed
22.
go back to reference De Baere S, Seghers J, Philippaerts R, De Martelaer K, Lefevre J. Intensity- and domain-specific levels of physical activity and sedentary behavior in 10–14 year-old children. J Phys Act Health. 2015; in press. De Baere S, Seghers J, Philippaerts R, De Martelaer K, Lefevre J. Intensity- and domain-specific levels of physical activity and sedentary behavior in 10–14 year-old children. J Phys Act Health. 2015; in press.
23.
go back to reference Roelants M, Hauspie R, Hoppenbrouwers K. References for growth and pubertal development from birth to 21 years in Flanders. Belgium Ann Hum Biol. 2009;36:680–94.CrossRefPubMed Roelants M, Hauspie R, Hoppenbrouwers K. References for growth and pubertal development from birth to 21 years in Flanders. Belgium Ann Hum Biol. 2009;36:680–94.CrossRefPubMed
24.
go back to reference Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34:689–94.PubMed Mirwald RL, Baxter-Jones AD, Bailey DA, Beunen GP. An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc. 2002;34:689–94.PubMed
25.
go back to reference Calabro MA, Stewart JM, Welk GJ. Validation of pattern-recognition monitors in children using doubly labeled water. Med Sci Sports Exerc. 2013;45:1313–22.CrossRefPubMed Calabro MA, Stewart JM, Welk GJ. Validation of pattern-recognition monitors in children using doubly labeled water. Med Sci Sports Exerc. 2013;45:1313–22.CrossRefPubMed
26.
go back to reference Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32:426–31.CrossRefPubMed Trost SG, Pate RR, Freedson PS, Sallis JF, Taylor WC. Using objective physical activity measures with youth: how many days of monitoring are needed? Med Sci Sports Exerc. 2000;32:426–31.CrossRefPubMed
27.
go back to reference Scheers T, Philippaerts R, Lefevre J. Patterns of physical activity and sedentary behavior in normal-weight, overweight and obese adults, as measured with a portable armband device and an electronic diary. Clin Nutr. 2012;31:756–64.CrossRefPubMed Scheers T, Philippaerts R, Lefevre J. Patterns of physical activity and sedentary behavior in normal-weight, overweight and obese adults, as measured with a portable armband device and an electronic diary. Clin Nutr. 2012;31:756–64.CrossRefPubMed
28.
go back to reference Dunton GF, Whalen CK, Jamner LD, Henker B, Floro JN. Using ecologic momentary assessment to measure physical activity during adolescence. Am J Prev Med. 2005;29:281–7.CrossRefPubMed Dunton GF, Whalen CK, Jamner LD, Henker B, Floro JN. Using ecologic momentary assessment to measure physical activity during adolescence. Am J Prev Med. 2005;29:281–7.CrossRefPubMed
29.
go back to reference Welk GJ, Corbin CB, Dale D. Measurement issues in the assessment of physical activity in children. Res Q Exerc Sport. 2000;71:S59–73.CrossRefPubMed Welk GJ, Corbin CB, Dale D. Measurement issues in the assessment of physical activity in children. Res Q Exerc Sport. 2000;71:S59–73.CrossRefPubMed
30.
go back to reference Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc. 1995;27:1033–41.CrossRefPubMed Bailey RC, Olson J, Pepper SL, Porszasz J, Barstow TJ, Cooper DM. The level and tempo of children’s physical activities: an observational study. Med Sci Sports Exerc. 1995;27:1033–41.CrossRefPubMed
32.
go back to reference Scheers T, Philippaerts R, Lefevre J. Variability in physical activity patterns as measured by the sense wear armband: how many days are needed? Eur J Appl Physiol. 2012;112:1653–62.CrossRefPubMed Scheers T, Philippaerts R, Lefevre J. Variability in physical activity patterns as measured by the sense wear armband: how many days are needed? Eur J Appl Physiol. 2012;112:1653–62.CrossRefPubMed
33.
go back to reference Riddoch CJ, Mattocks C, Deere K, Saunders J, Kirkby J, Tilling K, et al. Objective measurement of levels and patterns of physical activity. Arch Dis Child. 2007;92:963–9.CrossRefPubMedPubMedCentral Riddoch CJ, Mattocks C, Deere K, Saunders J, Kirkby J, Tilling K, et al. Objective measurement of levels and patterns of physical activity. Arch Dis Child. 2007;92:963–9.CrossRefPubMedPubMedCentral
34.
go back to reference Hox JJ, Maas CJ. The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Struct Equ Modeling. 2001;8:157–74.CrossRef Hox JJ, Maas CJ. The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Struct Equ Modeling. 2001;8:157–74.CrossRef
35.
36.
go back to reference Levine TR, Hullett CR. Eta squared, partial eta squared, and misreporting of effect size in communication research. Hum Commun Res. 2002;28:612–25.CrossRef Levine TR, Hullett CR. Eta squared, partial eta squared, and misreporting of effect size in communication research. Hum Commun Res. 2002;28:612–25.CrossRef
37.
go back to reference Rosnow RL, Rosenthal R. Computing contrasts, effect sizes, and counternulls on other people’s published data: General procedures for research consumers. Psychol Methods. 1996;1:331–40.CrossRef Rosnow RL, Rosenthal R. Computing contrasts, effect sizes, and counternulls on other people’s published data: General procedures for research consumers. Psychol Methods. 1996;1:331–40.CrossRef
38.
go back to reference Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13.CrossRefPubMed Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc. 2009;41:3–13.CrossRefPubMed
39.
go back to reference Telford RM, Telford RD, Cunningham RB, Cochrane T, Davey R, Waddington G. Longitudinal patterns of physical activity in children aged 8 to 12 years: the LOOK study. Int J Behav Nutr Phys Act. 2013;10:81.CrossRefPubMedPubMedCentral Telford RM, Telford RD, Cunningham RB, Cochrane T, Davey R, Waddington G. Longitudinal patterns of physical activity in children aged 8 to 12 years: the LOOK study. Int J Behav Nutr Phys Act. 2013;10:81.CrossRefPubMedPubMedCentral
40.
go back to reference Nader PR, Bradley RH, Houts RM, McRitchie SL, O’Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA. 2008;300:295–305.CrossRefPubMed Nader PR, Bradley RH, Houts RM, McRitchie SL, O’Brien M. Moderate-to-vigorous physical activity from ages 9 to 15 years. JAMA. 2008;300:295–305.CrossRefPubMed
41.
go back to reference Telama R, Yang X. Decline of physical activity from youth to young adulthood in Finland. Med Sci Sports Exerc. 2000;32:1617–22.CrossRefPubMed Telama R, Yang X. Decline of physical activity from youth to young adulthood in Finland. Med Sci Sports Exerc. 2000;32:1617–22.CrossRefPubMed
42.
go back to reference Bailey DP, Fairclough SJ, Savory LA, Denton SJ, Pang D, Deane CS, et al. Accelerometry-assessed sedentary behaviour and physical activity levels during the segmented school day in 10-14-year-old children: the HAPPY study. Eur J Pediatr. 2012;171:1805–13.CrossRefPubMed Bailey DP, Fairclough SJ, Savory LA, Denton SJ, Pang D, Deane CS, et al. Accelerometry-assessed sedentary behaviour and physical activity levels during the segmented school day in 10-14-year-old children: the HAPPY study. Eur J Pediatr. 2012;171:1805–13.CrossRefPubMed
43.
go back to reference Davison KK, Werder JL, Lawson CT. Children’s active commuting to school: current knowledge and future directions. Prev Chronic Dis. 2008;5:A100.PubMedPubMedCentral Davison KK, Werder JL, Lawson CT. Children’s active commuting to school: current knowledge and future directions. Prev Chronic Dis. 2008;5:A100.PubMedPubMedCentral
44.
go back to reference Carver A, Timperio AF, Hesketh KD, Ridgers ND, Salmon JL, Crawford DA. How is active transport associated with children’s and adolescents’ physical activity over time? Int J Behav Nutr Phys Act. 2011;8:126.CrossRefPubMedPubMedCentral Carver A, Timperio AF, Hesketh KD, Ridgers ND, Salmon JL, Crawford DA. How is active transport associated with children’s and adolescents’ physical activity over time? Int J Behav Nutr Phys Act. 2011;8:126.CrossRefPubMedPubMedCentral
45.
go back to reference Fairclough SJ, Beighle A, Erwin H, Ridgers ND. School day segmented physical activity patterns of high and low active children. BMC Public Health. 2012;12:406.CrossRefPubMedPubMedCentral Fairclough SJ, Beighle A, Erwin H, Ridgers ND. School day segmented physical activity patterns of high and low active children. BMC Public Health. 2012;12:406.CrossRefPubMedPubMedCentral
46.
go back to reference McKenzie TL, Crespo NC, Baquero B, Elder JP. Leisure-time physical activity in elementary schools: analysis of contextual conditions. J Sch Health. 2010;80:470–7.CrossRefPubMedPubMedCentral McKenzie TL, Crespo NC, Baquero B, Elder JP. Leisure-time physical activity in elementary schools: analysis of contextual conditions. J Sch Health. 2010;80:470–7.CrossRefPubMedPubMedCentral
47.
go back to reference Brooke HL, Corder K, Atkin AJ, van Sluijs EM. A systematic literature review with meta-analyses of within- and between-day differences in objectively measured physical activity in school-aged children. Sports Med. 2014;44:1427–38.CrossRefPubMedPubMedCentral Brooke HL, Corder K, Atkin AJ, van Sluijs EM. A systematic literature review with meta-analyses of within- and between-day differences in objectively measured physical activity in school-aged children. Sports Med. 2014;44:1427–38.CrossRefPubMedPubMedCentral
48.
go back to reference van Stralen MM, Yildirim M, Wulp A, te Velde SJ, Verloigne M, Doessegger A, et al. Measured sedentary time and physical activity during the school day of European 10- to 12-year-old children: the ENERGY project. J Sci Med Sport. 2014;17:201–6.CrossRefPubMed van Stralen MM, Yildirim M, Wulp A, te Velde SJ, Verloigne M, Doessegger A, et al. Measured sedentary time and physical activity during the school day of European 10- to 12-year-old children: the ENERGY project. J Sci Med Sport. 2014;17:201–6.CrossRefPubMed
49.
go back to reference Ridgers ND, Fairclough SJ, Stratton G. Variables associated with children’s physical activity levels during recess: the A-CLASS project. Int J Behav Nutr Phys Act. 2010;7:74.CrossRefPubMedPubMedCentral Ridgers ND, Fairclough SJ, Stratton G. Variables associated with children’s physical activity levels during recess: the A-CLASS project. Int J Behav Nutr Phys Act. 2010;7:74.CrossRefPubMedPubMedCentral
50.
go back to reference Ridgers ND, Salmon J, Parrish AM, Stanley RM, Okely AD. Physical activity during school recess: a systematic review. Am J Prev Med. 2012;43:320–8.CrossRefPubMed Ridgers ND, Salmon J, Parrish AM, Stanley RM, Okely AD. Physical activity during school recess: a systematic review. Am J Prev Med. 2012;43:320–8.CrossRefPubMed
51.
go back to reference Parrish AM, Okely AD, Stanley RM, Ridgers ND. The effect of school recess interventions on physical activity : a systematic review. Sports Med. 2013;43:287–99.CrossRefPubMed Parrish AM, Okely AD, Stanley RM, Ridgers ND. The effect of school recess interventions on physical activity : a systematic review. Sports Med. 2013;43:287–99.CrossRefPubMed
52.
go back to reference Abbott RA, Straker LM, Mathiassen SE. Patterning of children’s sedentary time at and away from school. Obesity (Silver Spring). 2013;21:E131–3.CrossRef Abbott RA, Straker LM, Mathiassen SE. Patterning of children’s sedentary time at and away from school. Obesity (Silver Spring). 2013;21:E131–3.CrossRef
53.
go back to reference Atkin AJ, Gorely T, Biddle SJ, Marshall SJ, Cameron N. Critical hours: physical activity and sedentary behavior of adolescents after school. Pediatr Exerc Sci. 2008;20:446–56.CrossRefPubMed Atkin AJ, Gorely T, Biddle SJ, Marshall SJ, Cameron N. Critical hours: physical activity and sedentary behavior of adolescents after school. Pediatr Exerc Sci. 2008;20:446–56.CrossRefPubMed
54.
go back to reference O’Connor J, Ball EJ, Steinbeck KS, Davies PS, Wishart C, Gaskin KJ, et al. Measuring physical activity in children: a comparison of four different methods. Pediatr Exerc Sci. 2003;15:202–15.CrossRef O’Connor J, Ball EJ, Steinbeck KS, Davies PS, Wishart C, Gaskin KJ, et al. Measuring physical activity in children: a comparison of four different methods. Pediatr Exerc Sci. 2003;15:202–15.CrossRef
55.
go back to reference Protudjer JL, Marchessault G, Kozyrskyj AL, Becker AB. Children’s perceptions of healthful eating and physical activity. Can J Diet Pract Res. 2010;71:19–23.CrossRefPubMed Protudjer JL, Marchessault G, Kozyrskyj AL, Becker AB. Children’s perceptions of healthful eating and physical activity. Can J Diet Pract Res. 2010;71:19–23.CrossRefPubMed
56.
go back to reference Ar-Yuwat S, Clark MJ, Hunter A, James KS. Determinants of physical activity in primary school students using the health belief model. J Multidiscip Healthc. 2013;6:119–26.CrossRefPubMedPubMedCentral Ar-Yuwat S, Clark MJ, Hunter A, James KS. Determinants of physical activity in primary school students using the health belief model. J Multidiscip Healthc. 2013;6:119–26.CrossRefPubMedPubMedCentral
57.
58.
go back to reference Salmon J, Arundell L, Hume C, Brown H, Hesketh K, Dunstan DW, et al. A cluster-randomized controlled trial to reduce sedentary behavior and promote physical activity and health of 8–9 year olds: the Transform-Us! study. BMC Public Health. 2011;11:759.CrossRefPubMedPubMedCentral Salmon J, Arundell L, Hume C, Brown H, Hesketh K, Dunstan DW, et al. A cluster-randomized controlled trial to reduce sedentary behavior and promote physical activity and health of 8–9 year olds: the Transform-Us! study. BMC Public Health. 2011;11:759.CrossRefPubMedPubMedCentral
59.
go back to reference Beets MW, Beighle A, Erwin HE, Huberty JL. After-school program impact on physical activity and fitness: a meta-analysis. Am J Prev Med. 2009;36:527–37.CrossRefPubMed Beets MW, Beighle A, Erwin HE, Huberty JL. After-school program impact on physical activity and fitness: a meta-analysis. Am J Prev Med. 2009;36:527–37.CrossRefPubMed
60.
go back to reference Atkin AJ, Gorely T, Biddle SJ, Cavill N, Foster C. Interventions to promote physical activity in young people conducted in the hours immediately after school: a systematic review. Int J Behav Med. 2011;18:176–87.CrossRefPubMed Atkin AJ, Gorely T, Biddle SJ, Cavill N, Foster C. Interventions to promote physical activity in young people conducted in the hours immediately after school: a systematic review. Int J Behav Med. 2011;18:176–87.CrossRefPubMed
61.
go back to reference Trost SG, Rosenkranz RR, Dzewaltowski D. Physical activity levels among children attending after-school programs. Med Sci Sports Exerc. 2008;40:622–9.CrossRefPubMed Trost SG, Rosenkranz RR, Dzewaltowski D. Physical activity levels among children attending after-school programs. Med Sci Sports Exerc. 2008;40:622–9.CrossRefPubMed
62.
go back to reference Van Acker R, De Bourdeaudhuij I, Seghers J, Kirk D, Haerens L, De Cocker K, et al. A framework for physical activity programs within school–community partnerships. Quest. 2011;63:300–20.CrossRef Van Acker R, De Bourdeaudhuij I, Seghers J, Kirk D, Haerens L, De Cocker K, et al. A framework for physical activity programs within school–community partnerships. Quest. 2011;63:300–20.CrossRef
63.
go back to reference De Meester A, Aelterman N, Cardon G, De Bourdeaudhuij I, Haerens L. Extracurricular school-based sports as a motivating vehicle for sports participation in youth: a cross-sectional study. Int J Behav Nutr Phys Act. 2014;11:48.CrossRefPubMedPubMedCentral De Meester A, Aelterman N, Cardon G, De Bourdeaudhuij I, Haerens L. Extracurricular school-based sports as a motivating vehicle for sports participation in youth: a cross-sectional study. Int J Behav Nutr Phys Act. 2014;11:48.CrossRefPubMedPubMedCentral
Metadata
Title
Temporal patterns of physical activity and sedentary behavior in 10–14 year-old children on weekdays
Authors
Stijn De Baere
Johan Lefevre
Kristine De Martelaer
Renaat Philippaerts
Jan Seghers
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-2093-7

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue