Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

The influence of aerobic fitness on obesity and its parent-offspring correlations in a cross-sectional study among German families

Authors: Ronja Foraita, Mirko Brandes, Frauke Günther, Karin Bammann, Iris Pigeot, Wolfgang Ahrens

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

Overweight/obesity is an important public health burden worldwide, increasing the risk for the development of cardiovascular diseases or the metabolic syndrome. This risk may be reduced by a good aerobic fitness (AF) that can be improved by physical activity but is also influenced by genetic factors. The aim of this study was to test for familial aggregation of AF measured by maximal oxygen uptake (VO2max) and to estimate its heritability. Furthermore, an exploratory analysis of the association between overweight/obesity and AF was performed. In contrast to previous studies, all analyses were adjusted for additional environmental and behavioral factors, in particular for objectively measured physical activity (PA) in addition to body mass index (BMI).

Methods

79 families (157 parents, 132 children) performed a maximum exercise test (spiroergometry) to assess maximum oxygen uptake. PA was measured by accelerometry. Familial aggregation of AF was determined using a two-step design: AF was adjusted for age, sex and age*sex using linear regression. Afterwards, the residuals were used to determine the intraclass correlation coefficient (ICC) by ANOVA. Heritability and associations were estimated by generalized linear mixed models.

Results

Familial aggregation of AF (ICC = 0.22, p < 0.001) was significant but decreased when adjusted for PA or BMI. Its heritability was estimated as 40 % (adjusted for PA) using the mid-parent-offspring design. Relative to the middle quintile of AF residuals, the odds of being overweight/obese were three- to tenfold reduced in the upper quintile (adjusted for age, sex, age*sex, PA).

Conclusions

AF clustered in families after controlling for PA, BMI and parental smoking. Heritability was stronger for mother-child pairs as compared to father-child pairs after controlling for PA and BMI. Above average AF was negatively associated with overweight/obesity.
Literature
1.
go back to reference Moreno LA, Pigeot I, Ahrens W. Epidemiology of obesity in children and adolescents - Prevalence and etiology. New York: Springer; 2011.CrossRef Moreno LA, Pigeot I, Ahrens W. Epidemiology of obesity in children and adolescents - Prevalence and etiology. New York: Springer; 2011.CrossRef
2.
go back to reference Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010;303:235–41.CrossRefPubMed Flegal KM, Carroll MD, Ogden CL, Curtin LR. Prevalence and trends in obesity among US adults, 1999-2008. JAMA. 2010;303:235–41.CrossRefPubMed
3.
go back to reference Stamatakis E, Wardle J, Cole TJ. Childhood obesity and overweight prevalence trends in England: evidence for growing socioeconomic disparities. Int J Obes (Lond). 2010;34:41–7.CrossRef Stamatakis E, Wardle J, Cole TJ. Childhood obesity and overweight prevalence trends in England: evidence for growing socioeconomic disparities. Int J Obes (Lond). 2010;34:41–7.CrossRef
4.
go back to reference Jekal Y, Yun JE, Park SW, Jee SH, Jeon JY. The relationship between the level of fatness and fitness during adolescence and the risk factors of metabolic disorders in adulthood. Korean Diabetes J. 2010;34:126–34.CrossRefPubMedPubMedCentral Jekal Y, Yun JE, Park SW, Jee SH, Jeon JY. The relationship between the level of fatness and fitness during adolescence and the risk factors of metabolic disorders in adulthood. Korean Diabetes J. 2010;34:126–34.CrossRefPubMedPubMedCentral
5.
go back to reference Simmons RK, Griffin SJ, Steele R, Wareham NJ, Ekelund U. Increasing overall physical activity and aerobic fitness is associated with improvements in metabolic risk: cohort analysis of the ProActive trial. Diabetologia. 2008;51:787–94.CrossRefPubMedPubMedCentral Simmons RK, Griffin SJ, Steele R, Wareham NJ, Ekelund U. Increasing overall physical activity and aerobic fitness is associated with improvements in metabolic risk: cohort analysis of the ProActive trial. Diabetologia. 2008;51:787–94.CrossRefPubMedPubMedCentral
6.
go back to reference Roth J, Qiang X, Marban SL, Redelt H, Lowell BC. The obesity pandemic: where have we been and where are we going? Obes Res. 2004;12 Suppl 2:88S–101S.CrossRefPubMed Roth J, Qiang X, Marban SL, Redelt H, Lowell BC. The obesity pandemic: where have we been and where are we going? Obes Res. 2004;12 Suppl 2:88S–101S.CrossRefPubMed
7.
go back to reference Lee CD, Blair SN, Jackson AS. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr. 1999;69:373–80.PubMed Lee CD, Blair SN, Jackson AS. Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. Am J Clin Nutr. 1999;69:373–80.PubMed
8.
go back to reference Barry VW, Baruth M, Beets MW, Durstine JL, Liu J, Blair SN. Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis. 2014;56:382–90.CrossRefPubMed Barry VW, Baruth M, Beets MW, Durstine JL, Liu J, Blair SN. Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis. 2014;56:382–90.CrossRefPubMed
9.
go back to reference Wessel TR, Arant CB, Olson MB, Johnson BD, Reis SE, Sharaf BL, et al. Relationship of physical fitness vs body mass index with coronary artery disease and cardiovascular events in women. JAMA. 2004;292:1179–87.CrossRefPubMed Wessel TR, Arant CB, Olson MB, Johnson BD, Reis SE, Sharaf BL, et al. Relationship of physical fitness vs body mass index with coronary artery disease and cardiovascular events in women. JAMA. 2004;292:1179–87.CrossRefPubMed
10.
go back to reference Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol. 2010;24:27–35.CrossRefPubMedPubMedCentral Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general population: the importance of cardiorespiratory fitness. J Psychopharmacol. 2010;24:27–35.CrossRefPubMedPubMedCentral
11.
go back to reference Warren JM, Ekelund U, Besson H, Mezzani A, Geladas N, Vanhees L. Assessment of physical activity - a review of methodologies with reference to epidemiological research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010;17:127–39.CrossRefPubMed Warren JM, Ekelund U, Besson H, Mezzani A, Geladas N, Vanhees L. Assessment of physical activity - a review of methodologies with reference to epidemiological research: a report of the exercise physiology section of the European Association of Cardiovascular Prevention and Rehabilitation. Eur J Cardiovasc Prev Rehabil. 2010;17:127–39.CrossRefPubMed
12.
go back to reference Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33:S446–51.CrossRefPubMed Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33:S446–51.CrossRefPubMed
13.
go back to reference Lortie G, Bouchard C, Leblanc C, Tremblay A, Simoneau JA, Theriault G, et al. Familial similarity in aerobic power. Hum Biol. 1982;54:801–12.PubMed Lortie G, Bouchard C, Leblanc C, Tremblay A, Simoneau JA, Theriault G, et al. Familial similarity in aerobic power. Hum Biol. 1982;54:801–12.PubMed
14.
go back to reference Sallis JF, Patterson TL, Morris JA, Nader PR, Buono MJ. Familial aggregation of aerobic power: the influence of age, physical activity, and body mass index. Res Q Exerc Sport. 1989;60:318–24.CrossRefPubMed Sallis JF, Patterson TL, Morris JA, Nader PR, Buono MJ. Familial aggregation of aerobic power: the influence of age, physical activity, and body mass index. Res Q Exerc Sport. 1989;60:318–24.CrossRefPubMed
15.
go back to reference Klissouras V. Heritability of adaptive variation. J Appl Physiol. 1971;31:338–44.PubMed Klissouras V. Heritability of adaptive variation. J Appl Physiol. 1971;31:338–44.PubMed
16.
go back to reference Klissouras V, Pirnay F, Petit JM. Adaptation to maximal effort: genetics and age. J Appl Physiol. 1973;35:288–93.PubMed Klissouras V, Pirnay F, Petit JM. Adaptation to maximal effort: genetics and age. J Appl Physiol. 1973;35:288–93.PubMed
17.
go back to reference Bouchard C, Lesage R, Lortie G, Simoneau JA, Hamel P, Boulay MR, et al. Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc. 1986;18:639–46.CrossRefPubMed Bouchard C, Lesage R, Lortie G, Simoneau JA, Hamel P, Boulay MR, et al. Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc. 1986;18:639–46.CrossRefPubMed
18.
go back to reference Maes HH, Beunen GP, Vlietinck RF, Neale MC, Thomis M, Vanden EB, et al. Inheritance of physical fitness in 10-year-old twins and their parents. Med Sci Sports Exerc. 1996;28:1479–91.CrossRefPubMed Maes HH, Beunen GP, Vlietinck RF, Neale MC, Thomis M, Vanden EB, et al. Inheritance of physical fitness in 10-year-old twins and their parents. Med Sci Sports Exerc. 1996;28:1479–91.CrossRefPubMed
19.
go back to reference Sundet M, Magnus P, Tambs K. The heritability of maximal aerobic power: a study of Norwegian twins. Scand J Med Sci Spor. 1994;4:181–5.CrossRef Sundet M, Magnus P, Tambs K. The heritability of maximal aerobic power: a study of Norwegian twins. Scand J Med Sci Spor. 1994;4:181–5.CrossRef
20.
go back to reference Bouchard C, Daw EW, Rice T, Perusse L, Gagnon J, Province MA, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998;30:252–8.CrossRefPubMed Bouchard C, Daw EW, Rice T, Perusse L, Gagnon J, Province MA, et al. Familial resemblance for VO2max in the sedentary state: the HERITAGE family study. Med Sci Sports Exerc. 1998;30:252–8.CrossRefPubMed
21.
go back to reference Montoye HJ, Gayle R. Familial relationships in maximal oxygen uptake. Hum Biol. 1978;50:241–9.PubMed Montoye HJ, Gayle R. Familial relationships in maximal oxygen uptake. Hum Biol. 1978;50:241–9.PubMed
22.
go back to reference Perusse L, Lortie G, Leblanc C, Tremblay A, Theriault G, Bouchard C. Genetic and environmental sources of variation in physical fitness. Ann Hum Biol. 1987;14:425–34.CrossRefPubMed Perusse L, Lortie G, Leblanc C, Tremblay A, Theriault G, Bouchard C. Genetic and environmental sources of variation in physical fitness. Ann Hum Biol. 1987;14:425–34.CrossRefPubMed
23.
go back to reference Kristensen PL, Moeller NC, Korsholm L, Kolle E, Wedderkopp N, Froberg K, et al. The association between aerobic fitness and physical activity in children and adolescents: the European youth heart study. Eur J Appl Physiol. 2010;110:267–75.CrossRefPubMed Kristensen PL, Moeller NC, Korsholm L, Kolle E, Wedderkopp N, Froberg K, et al. The association between aerobic fitness and physical activity in children and adolescents: the European youth heart study. Eur J Appl Physiol. 2010;110:267–75.CrossRefPubMed
24.
go back to reference Bernaards CM, Twisk JW, van Mechelen W, Snel J, Kemper HC. A longitudinal study on smoking in relationship to fitness and heart rate response. Med Sci Sports Exerc. 2003;35:793–800.CrossRefPubMed Bernaards CM, Twisk JW, van Mechelen W, Snel J, Kemper HC. A longitudinal study on smoking in relationship to fitness and heart rate response. Med Sci Sports Exerc. 2003;35:793–800.CrossRefPubMed
25.
go back to reference Ahrens W, Bammann K, de Henauw S, Halford J, Palou A, Pigeot I, et al. Understanding and preventing childhood obesity and related disorders - IDEFICS: a European multilevel epidemiological approach. Nutr Metab Cardiovasc Dis. 2006;16:302–8.CrossRefPubMed Ahrens W, Bammann K, de Henauw S, Halford J, Palou A, Pigeot I, et al. Understanding and preventing childhood obesity and related disorders - IDEFICS: a European multilevel epidemiological approach. Nutr Metab Cardiovasc Dis. 2006;16:302–8.CrossRefPubMed
26.
go back to reference Ahrens W, Bammann K, Siani A, Buchecker K, de Henauw S, Iacoviello L, et al. The IDEFICS cohort: design, characteristics and participation in the baseline survey. Int J Obes (Lond). 2011;35 Suppl 1:S3–S15.CrossRef Ahrens W, Bammann K, Siani A, Buchecker K, de Henauw S, Iacoviello L, et al. The IDEFICS cohort: design, characteristics and participation in the baseline survey. Int J Obes (Lond). 2011;35 Suppl 1:S3–S15.CrossRef
27.
go back to reference Marfell-Jones M, Olds T, Stewart A, Carter L. International standards for anthropometric assessment. The International Society for the Advancement of Kinanthropometry: Underdale; 2006. Marfell-Jones M, Olds T, Stewart A, Carter L. International standards for anthropometric assessment. The International Society for the Advancement of Kinanthropometry: Underdale; 2006.
28.
go back to reference WHO Expert Commitee on Physical Status: the use and interpretation of anthropometry. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. 1995. WHO Expert Commitee on Physical Status: the use and interpretation of anthropometry. Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. 1995.
29.
go back to reference Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ. 2007;335:194.CrossRefPubMedPubMedCentral Cole TJ, Flegal KM, Nicholls D, Jackson AA. Body mass index cut offs to define thinness in children and adolescents: international survey. BMJ. 2007;335:194.CrossRefPubMedPubMedCentral
30.
go back to reference Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104:1694–740.CrossRefPubMed Fletcher GF, Balady GJ, Amsterdam EA, Chaitman B, Eckel R, Fleg J, et al. Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104:1694–740.CrossRefPubMed
31.
go back to reference Sirard JR, Riner Jr WF, McIver KL, Pate RR. Physical activity and active commuting to elementary school. Med Sci Sports Exerc. 2005;37:2062–9.CrossRefPubMed Sirard JR, Riner Jr WF, McIver KL, Pate RR. Physical activity and active commuting to elementary school. Med Sci Sports Exerc. 2005;37:2062–9.CrossRefPubMed
32.
go back to reference Donner A. The number of families required for detecting the familial aggregation of a continuous attribute. Am J Epidemiol. 1978;108:425–8.PubMed Donner A. The number of families required for detecting the familial aggregation of a continuous attribute. Am J Epidemiol. 1978;108:425–8.PubMed
33.
go back to reference Falconer DS. Introduction to quantitative genetics. London: Longman; 1960. Falconer DS. Introduction to quantitative genetics. London: Longman; 1960.
34.
go back to reference Guion WK, McMurray RG, Ainsworth B, Harrell J. Familial patterns of maximal aerobic power. Biol Sport. 1997;14:185–92. Guion WK, McMurray RG, Ainsworth B, Harrell J. Familial patterns of maximal aerobic power. Biol Sport. 1997;14:185–92.
35.
go back to reference Perusse L, Rice T, Province MA, Gagnon J, Leon AS, Skinner JS, et al. Familial aggregation of amount and distribution of subcutaneous fat and their responses to exercise training in the HERITAGE family study. Obes Res. 2000;8:140–50.CrossRefPubMed Perusse L, Rice T, Province MA, Gagnon J, Leon AS, Skinner JS, et al. Familial aggregation of amount and distribution of subcutaneous fat and their responses to exercise training in the HERITAGE family study. Obes Res. 2000;8:140–50.CrossRefPubMed
36.
go back to reference Mak KK, Ho SY, Lo WS, Thomas GN, McManus AM, Day JR, et al. Health-related physical fitness and weight status in Hong Kong adolescents. BMC Public Health. 2010;10:88.CrossRefPubMedPubMedCentral Mak KK, Ho SY, Lo WS, Thomas GN, McManus AM, Day JR, et al. Health-related physical fitness and weight status in Hong Kong adolescents. BMC Public Health. 2010;10:88.CrossRefPubMedPubMedCentral
37.
go back to reference Artero EG, Espana-Romero V, Ortega FB, Jimenez-Pavon D, Ruiz JR, Vicente-Rodriguez G, et al. Health-related fitness in adolescents: underweight, and not only overweight, as an influencing factor. The AVENA study. Scand J Med Sci Sports. 2010;20:418–27.CrossRefPubMed Artero EG, Espana-Romero V, Ortega FB, Jimenez-Pavon D, Ruiz JR, Vicente-Rodriguez G, et al. Health-related fitness in adolescents: underweight, and not only overweight, as an influencing factor. The AVENA study. Scand J Med Sci Sports. 2010;20:418–27.CrossRefPubMed
38.
go back to reference Kurth BM, Schaffrath RA. The prevalence of overweight and obese children and adolescents living in Germany. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2007;50:736–43.CrossRefPubMed Kurth BM, Schaffrath RA. The prevalence of overweight and obese children and adolescents living in Germany. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS). Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2007;50:736–43.CrossRefPubMed
39.
go back to reference Welsman JR, Armstrong N, Nevill AM, Winter EM, Kirby BJ. Scaling peak VO2 for differences in body size. Med Sci Sports Exerc. 1996;28:259–65.CrossRefPubMed Welsman JR, Armstrong N, Nevill AM, Winter EM, Kirby BJ. Scaling peak VO2 for differences in body size. Med Sci Sports Exerc. 1996;28:259–65.CrossRefPubMed
40.
go back to reference Graves LE, Batterham AM, Foweather L, McWhannell N, Hopkins ND, Boddy LM, et al. Scaling of peak oxygen uptake in children: a comparison of three body size index models. Med Sci Sports Exerc. 2013;45:2341–5.CrossRefPubMed Graves LE, Batterham AM, Foweather L, McWhannell N, Hopkins ND, Boddy LM, et al. Scaling of peak oxygen uptake in children: a comparison of three body size index models. Med Sci Sports Exerc. 2013;45:2341–5.CrossRefPubMed
41.
go back to reference Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–81.CrossRefPubMed Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–81.CrossRefPubMed
42.
go back to reference Hendelman D, Miller K, Baggett C, Debold E, Freedson P. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc. 2000;32:S442–9.CrossRefPubMed Hendelman D, Miller K, Baggett C, Debold E, Freedson P. Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc. 2000;32:S442–9.CrossRefPubMed
43.
go back to reference Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10:150–7.CrossRefPubMed Puyau MR, Adolph AL, Vohra FA, Butte NF. Validation and calibration of physical activity monitors in children. Obes Res. 2002;10:150–7.CrossRefPubMed
44.
go back to reference Swartz AM, Strath SJ, Bassett Jr DR, O’Brien WL, King GA, Ainsworth BE. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med Sci Sports Exerc. 2000;32:S450–6.CrossRefPubMed Swartz AM, Strath SJ, Bassett Jr DR, O’Brien WL, King GA, Ainsworth BE. Estimation of energy expenditure using CSA accelerometers at hip and wrist sites. Med Sci Sports Exerc. 2000;32:S450–6.CrossRefPubMed
45.
go back to reference Cliff DP, Reilly JJ, Okely AD. Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0-5 years. J Sci Med Sport. 2009;12:557–67.CrossRefPubMed Cliff DP, Reilly JJ, Okely AD. Methodological considerations in using accelerometers to assess habitual physical activity in children aged 0-5 years. J Sci Med Sport. 2009;12:557–67.CrossRefPubMed
46.
go back to reference Bundeszentrale für gesundheitliche Aufklärung (BZgA). Die Drogenaffinität Jugendlicher in der Bundesrepublik Deutschland 2011. Der Konsum von Alkohol, Tabak und illegalen Drogen: aktuelle Verbreitung und Trends. Köln: Bundeszentrale für gesundheitliche Aufklärung. 2012. Bundeszentrale für gesundheitliche Aufklärung (BZgA). Die Drogenaffinität Jugendlicher in der Bundesrepublik Deutschland 2011. Der Konsum von Alkohol, Tabak und illegalen Drogen: aktuelle Verbreitung und Trends. Köln: Bundeszentrale für gesundheitliche Aufklärung. 2012.
48.
go back to reference Vozoris NT, O’Donnell DE. Smoking, activity level and exercise test outcomes in a young population sample without cardio-pulmonary disease. J Sports Med Phys Fitness. 2015; Epub ahead of print. Vozoris NT, O’Donnell DE. Smoking, activity level and exercise test outcomes in a young population sample without cardio-pulmonary disease. J Sports Med Phys Fitness. 2015; Epub ahead of print.
Metadata
Title
The influence of aerobic fitness on obesity and its parent-offspring correlations in a cross-sectional study among German families
Authors
Ronja Foraita
Mirko Brandes
Frauke Günther
Karin Bammann
Iris Pigeot
Wolfgang Ahrens
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-2013-x

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue