Skip to main content
Top
Published in: BMC Public Health 1/2015

Open Access 01-12-2015 | Research article

Prevalence and drug resistance profile of Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients attending two public hospitals in East Gojjam zone, northwest Ethiopia

Authors: Kelemework Adane, Gobena Ameni, Shiferaw Bekele, Markos Abebe, Abraham Aseffa

Published in: BMC Public Health | Issue 1/2015

Login to get access

Abstract

Background

The spread of multidrug-resistant tuberculosis (MDR-TB) strains has become a challenge to the global TB control and prevention program. In Ethiopia, particularly in rural areas, information on drug-resistant TB is very limited. In this study, we determined the drug resistance patterns of Mycobacterium tuberculosis (M. tuberculosis) isolates from pulmonary TB patients attending two public hospitals in the East Gojjam zone of northwest Ethiopia.

Methods

A cross-sectional study was conducted between May 2011 and January 2012 using Region of difference-9 (RD9) typing for the identification of species mycobacterium. Drug susceptibility testing (DST) of M. tuberculosis isolates to the first-line drugs: isoniazid, rifampicin, ethambutol and streptomycin was performed by the indirect proportion method on Middle brook 7H10 Agar media.

Results

Out of 385 pulmonary TB suspects studied, 124 (32.2 %) were culture positive among which 120 were M. tuberculosis strains. Susceptibility testing was performed for 89 isolates. Resistance to at least one drug was 15.58 % ([12/77], 95 % CI: 7.48-23.68) among newly diagnosed and 50.0 % ([6/12], 95 % CI: 21.71-78.29) among previously treated cases. Resistance among newly diagnosed patients was most common for streptomycin 5.19 % (4/77) and ethambutol 5.19 % (4/77) followed by rifampicin 3.89 % (3/77). Among retreatment cases, isoniazid resistance was most frequent in which 33.33 % (4/12) of the isolates were resistant. MDR prevalence was 1.29 % (1/77) for newly diagnosed and 16.67 % (2/12) for retreatment cases. In a multivariate logistic regression analysis, age group of 25–34 years (adjusted OR = 4.24; 95 % CI: 1.02-17.5; P = 0.046) and previous history of treatment (adjusted OR = 5.42; 95 % CI: 1.56-27.49; P = 0.01) were independently associated with anti-TB drug resistance.

Conclusions

In general, the magnitude of anti-TB drug resistance including MDR-TB was comparable to previous studies in other areas of Ethiopia. However, rifampicin resistance was high, which could suggest the potential for a rise in the incidence of MDR. Therefore, re-enforcing TB control programs should be considered by the concerned public health authorities.
Literature
1.
go back to reference World Health Organization. Global tuberculosis report. 2013. World Health Organization. Global tuberculosis report. 2013.
2.
go back to reference World Health Organization. Anti-tuberculosis drug resistance in the world: Prevalence and trends. 2000. World Health Organization. Anti-tuberculosis drug resistance in the world: Prevalence and trends. 2000.
3.
go back to reference Federal Ministry of Health of Ethiopia. Manual for National Tuberculosis and Leprosy Control Programme. Ethiopia: Ministry of Health, Addis Ababa; 2008. Federal Ministry of Health of Ethiopia. Manual for National Tuberculosis and Leprosy Control Programme. Ethiopia: Ministry of Health, Addis Ababa; 2008.
4.
go back to reference Eyob G, Guebrexabher H, Lemma E, Wolday D, Gebeyehu M, Abate G, et al. Drug susceptibility of Mycobacterium tuberculosis in HIV-infected and-uninfected Ethiopians and its impact on outcome after 24 months of follow-up. Int J Tuberc Lung Dis. 2004;8(11):1388–91. Eyob G, Guebrexabher H, Lemma E, Wolday D, Gebeyehu M, Abate G, et al. Drug susceptibility of Mycobacterium tuberculosis in HIV-infected and-uninfected Ethiopians and its impact on outcome after 24 months of follow-up. Int J Tuberc Lung Dis. 2004;8(11):1388–91.
5.
go back to reference Bruchfeld J, Aderaye G, Palme IB, Bjorvatn B, Ghebremichael S, Hoffner S, et al. Molecular epidemiology and drug resistance of Mycobacterium tuberculosis isolates from Ethiopian pulmonary tuberculosis patients with and without human immunodeficiency virus infection. J J Clin Microbiol. 2002;40(5):1636–43.CrossRefPubMed Bruchfeld J, Aderaye G, Palme IB, Bjorvatn B, Ghebremichael S, Hoffner S, et al. Molecular epidemiology and drug resistance of Mycobacterium tuberculosis isolates from Ethiopian pulmonary tuberculosis patients with and without human immunodeficiency virus infection. J J Clin Microbiol. 2002;40(5):1636–43.CrossRefPubMed
6.
go back to reference Yimer S, Bjune G, Alene G. Diagnostic and treatment delay among pulmonary tuberculosis patients in Ethiopia: a cross sectional study. BMC Infect Dis. 2005;5(1):112.CrossRefPubMedPubMedCentral Yimer S, Bjune G, Alene G. Diagnostic and treatment delay among pulmonary tuberculosis patients in Ethiopia: a cross sectional study. BMC Infect Dis. 2005;5(1):112.CrossRefPubMedPubMedCentral
7.
go back to reference Abbink JG. New configurations of Ethiopian ethnicity: the challenge of the South. Northeast Afr Studi. 1998;59–81. Abbink JG. New configurations of Ethiopian ethnicity: the challenge of the South. Northeast Afr Studi. 1998;59–81.
8.
go back to reference Narasimhan P, Wood J, MacIntyre CR, Mathai D. Risk factors for tuberculosis. Pulmonary Medicine. 2013;2013. Narasimhan P, Wood J, MacIntyre CR, Mathai D. Risk factors for tuberculosis. Pulmonary Medicine. 2013;2013.
9.
go back to reference Amhara National Regional State Health Bureau. Fifth National TB Research Conference. Bahir Dar: ANRS/TBLCP; 2009. p. 1–37. Amhara National Regional State Health Bureau. Fifth National TB Research Conference. Bahir Dar: ANRS/TBLCP; 2009. p. 1–37.
10.
go back to reference Asemahagn M. Assessing the quality of tuberculosis laboratory services in selected public and private health facilities in Western Amhara Ethiopia. J Med Diagn Meth. 2014;3(158):2. Asemahagn M. Assessing the quality of tuberculosis laboratory services in selected public and private health facilities in Western Amhara Ethiopia. J Med Diagn Meth. 2014;3(158):2.
11.
go back to reference Amhara Regional Health Bureau (ARHB). Second quarter health sectors’ performance report. Bahir Dar, Ethiopia. 2005. Amhara Regional Health Bureau (ARHB). Second quarter health sectors’ performance report. Bahir Dar, Ethiopia. 2005.
12.
go back to reference Huard RC, de Oliveira Lazzarini LC, Butler WR, van Soolingen D, Ho JL. PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions. J Clin Microbiol. 2003;41(4):1637–50.CrossRefPubMedPubMedCentral Huard RC, de Oliveira Lazzarini LC, Butler WR, van Soolingen D, Ho JL. PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions. J Clin Microbiol. 2003;41(4):1637–50.CrossRefPubMedPubMedCentral
13.
go back to reference World Health Organization. Laboratory services in tuberculosis control for the global tuberculosis programme. 1998. World Health Organization. Laboratory services in tuberculosis control for the global tuberculosis programme. 1998.
14.
go back to reference Van Klingeren B, Dessens-Kroon M, van der Laan T, Kremer K, van Soolingen D. Drug susceptibility testing of Mycobacterium tuberculosis complex by use of a high-throughput, reproducible, absolute concentration method. J Clin Microbiol. 2007;45(8):2662–8.CrossRefPubMedPubMedCentral Van Klingeren B, Dessens-Kroon M, van der Laan T, Kremer K, van Soolingen D. Drug susceptibility testing of Mycobacterium tuberculosis complex by use of a high-throughput, reproducible, absolute concentration method. J Clin Microbiol. 2007;45(8):2662–8.CrossRefPubMedPubMedCentral
15.
go back to reference World Health Organization. Guidelines for surveillance of drug resistance in tuberculosis. 4th ed. 2009. World Health Organization. Guidelines for surveillance of drug resistance in tuberculosis. 4th ed. 2009.
16.
go back to reference Biadglegne F, Tessema B, Sack U, Rodloff AC. Drug resistance of Mycobacterium tuberculosis isolates from tuberculosis lymphadenitis patients in Ethiopia. IJMR. 2014;140(1):116. Biadglegne F, Tessema B, Sack U, Rodloff AC. Drug resistance of Mycobacterium tuberculosis isolates from tuberculosis lymphadenitis patients in Ethiopia. IJMR. 2014;140(1):116.
17.
go back to reference Agonafir M, Lemma E, Wolde-Meskel D, Goshu S, Santhanam A, Girmachew F, et al. Phenotypic and genotypic analysis of multidrug-resistant tuberculosis in Ethiopia. Int J Tuberc Lung Dis. 2010;14(10):1259–65.PubMed Agonafir M, Lemma E, Wolde-Meskel D, Goshu S, Santhanam A, Girmachew F, et al. Phenotypic and genotypic analysis of multidrug-resistant tuberculosis in Ethiopia. Int J Tuberc Lung Dis. 2010;14(10):1259–65.PubMed
18.
go back to reference Churchyard G, Corbett E, Kleinschmidt I, Mulder D, De Cock K. Drug-resistant tuberculosis in South African gold miners: incidence and associated factors. Int J Tuberc Lung Dis. 2000;4(5):433–40.PubMed Churchyard G, Corbett E, Kleinschmidt I, Mulder D, De Cock K. Drug-resistant tuberculosis in South African gold miners: incidence and associated factors. Int J Tuberc Lung Dis. 2000;4(5):433–40.PubMed
19.
go back to reference Ndung’u PW, Kariuki S, Revathi G. Resistance patterns of Mycobacterium tuberculosis isolates from pulmonary tuberculosis patients in Nairobi. Int J Tuberc Lung Dis. 2011;6(01):33–9. Ndung’u PW, Kariuki S, Revathi G. Resistance patterns of Mycobacterium tuberculosis isolates from pulmonary tuberculosis patients in Nairobi. Int J Tuberc Lung Dis. 2011;6(01):33–9.
20.
go back to reference Kassu Desta DA, Lemma E, Gebeyehu M, Feleke B. Drug susceptibility of Mycobacterium tuberculosis isolates from smear negative pulmonary tuberculosis patients, Addis Ababa, Ethiopia. Ethiop J Health Dev. 2008;22(2):212–5. Kassu Desta DA, Lemma E, Gebeyehu M, Feleke B. Drug susceptibility of Mycobacterium tuberculosis isolates from smear negative pulmonary tuberculosis patients, Addis Ababa, Ethiopia. Ethiop J Health Dev. 2008;22(2):212–5.
21.
go back to reference Hussein B, Debebe T, Wilder-Smith A, Ameni G. Drug susceptibility test on Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in three sites of Ethiopia. Afr J Microbiol Res. 2013;7(9):791–6. Hussein B, Debebe T, Wilder-Smith A, Ameni G. Drug susceptibility test on Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients in three sites of Ethiopia. Afr J Microbiol Res. 2013;7(9):791–6.
22.
go back to reference Umubyeyi AN, Vandebriel G, Gasana M, Basinga P, Zawadi J, Gatabazi J, et al. Results of a national survey on drug resistance among pulmonary tuberculosis patients in Rwanda. Int J Tuberc Lung Dis. 2007;11(2):189–94.PubMed Umubyeyi AN, Vandebriel G, Gasana M, Basinga P, Zawadi J, Gatabazi J, et al. Results of a national survey on drug resistance among pulmonary tuberculosis patients in Rwanda. Int J Tuberc Lung Dis. 2007;11(2):189–94.PubMed
23.
go back to reference Bazira J, Asiimwe BB, Joloba ML, Bwanga F, Matee MI. Mycobacterium tuberculosis spoligotypes and drug susceptibility pattern of isolates from tuberculosis patients in South-Western Uganda. BMC Infect Dis. 2011;11(1):81.CrossRefPubMedPubMedCentral Bazira J, Asiimwe BB, Joloba ML, Bwanga F, Matee MI. Mycobacterium tuberculosis spoligotypes and drug susceptibility pattern of isolates from tuberculosis patients in South-Western Uganda. BMC Infect Dis. 2011;11(1):81.CrossRefPubMedPubMedCentral
24.
go back to reference Yimer SA, Agonafir M, Derese Y, Sani Y, Bjune GA. HOLM‐HANSEN C. Primary drug resistance to anti‐tuberculosis drugs in major towns of Amhara region, Ethiopia. Apmis. 2012;120(6):503–9.CrossRefPubMed Yimer SA, Agonafir M, Derese Y, Sani Y, Bjune GA. HOLM‐HANSEN C. Primary drug resistance to anti‐tuberculosis drugs in major towns of Amhara region, Ethiopia. Apmis. 2012;120(6):503–9.CrossRefPubMed
25.
go back to reference Demissie M, Gebeyehu M, Berhane Y. Primary resistance to anti-tuberculosis drugs in Addis Ababa Ethiopia. Int J Tuberc Lung Dis. 1997;1(1):64–7.PubMed Demissie M, Gebeyehu M, Berhane Y. Primary resistance to anti-tuberculosis drugs in Addis Ababa Ethiopia. Int J Tuberc Lung Dis. 1997;1(1):64–7.PubMed
26.
go back to reference Abate G, Miörner H. Susceptibility of multidrug-resistant strains of Mycobacterium tuberculosis to amoxycillin in combination with clavulanic acid and ethambutol. J Antimicrob Chemother. 1998;42(6):735–40.CrossRefPubMed Abate G, Miörner H. Susceptibility of multidrug-resistant strains of Mycobacterium tuberculosis to amoxycillin in combination with clavulanic acid and ethambutol. J Antimicrob Chemother. 1998;42(6):735–40.CrossRefPubMed
27.
go back to reference Green E, Obi C,Nchabeleng M, De Villiers B, Sein P, Letsoalo T, et al. Drug-susceptibility patterns of Mycobacterium tubeatrculosisin Mpumalanga Provice, South Africa: Possible guiding design of retreatment regimen. J Health Popul Nut. 2010; 28(1):7. Green E, Obi C,Nchabeleng M, De Villiers B, Sein P, Letsoalo T, et al. Drug-susceptibility patterns of Mycobacterium tubeatrculosisin Mpumalanga Provice, South Africa: Possible guiding design of retreatment regimen. J Health Popul Nut. 2010; 28(1):7.
28.
go back to reference Abebe G, Abdissa K, Abdissa A, Apers L, Agonafir M, De-Jong BC, et al. Relatively low primary drug resistant tuberculosis in southwestern Ethiopia. BMC Res Notes. 2012;5(1):225. Abebe G, Abdissa K, Abdissa A, Apers L, Agonafir M, De-Jong BC, et al. Relatively low primary drug resistant tuberculosis in southwestern Ethiopia. BMC Res Notes. 2012;5(1):225.
29.
go back to reference Mitike G, Kebede D, Yeneneh H. Prevalence of antituberculosis drug resistance in Harar Tuberculosis Centre Ethiopia. East Afr Med J. 1997;74(3):158–61.PubMed Mitike G, Kebede D, Yeneneh H. Prevalence of antituberculosis drug resistance in Harar Tuberculosis Centre Ethiopia. East Afr Med J. 1997;74(3):158–61.PubMed
30.
go back to reference Ramaswamy S, Musser J. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis update. Tubercle Lung Dis. 1998;79(1):3–29.CrossRef Ramaswamy S, Musser J. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis update. Tubercle Lung Dis. 1998;79(1):3–29.CrossRef
31.
go back to reference Noeske J, Nguenko PN. Impact of resistance to anti-tuberculosis drugs on treatment outcome using World Health Organization standard regimens. Trans R Soc Trop Med Hyg. 2002;96(4):429–33.CrossRefPubMed Noeske J, Nguenko PN. Impact of resistance to anti-tuberculosis drugs on treatment outcome using World Health Organization standard regimens. Trans R Soc Trop Med Hyg. 2002;96(4):429–33.CrossRefPubMed
32.
go back to reference Murray J, Sonnenberg P, Shearer SC, Godfrey-Faussett P. Human immunodeficiency virus and the outcome of treatment for new and recurrent pulmonary tuberculosis in African patients. Am J Respir Crit Care Med. 1999;159(3):733–40.CrossRefPubMed Murray J, Sonnenberg P, Shearer SC, Godfrey-Faussett P. Human immunodeficiency virus and the outcome of treatment for new and recurrent pulmonary tuberculosis in African patients. Am J Respir Crit Care Med. 1999;159(3):733–40.CrossRefPubMed
Metadata
Title
Prevalence and drug resistance profile of Mycobacterium tuberculosis isolated from pulmonary tuberculosis patients attending two public hospitals in East Gojjam zone, northwest Ethiopia
Authors
Kelemework Adane
Gobena Ameni
Shiferaw Bekele
Markos Abebe
Abraham Aseffa
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Public Health / Issue 1/2015
Electronic ISSN: 1471-2458
DOI
https://doi.org/10.1186/s12889-015-1933-9

Other articles of this Issue 1/2015

BMC Public Health 1/2015 Go to the issue