Skip to main content
Top
Published in: BMC Psychiatry 1/2019

Open Access 01-12-2019 | Affective Disorder | Study protocol

Neurocognitive working mechanisms of the prevention of relapse in remitted recurrent depression (NEWPRIDE): protocol of a randomized controlled neuroimaging trial of preventive cognitive therapy

Authors: Rozemarijn S. van Kleef, Claudi L. H. Bockting, Evelien van Valen, André Aleman, Jan-Bernard C. Marsman, Marie-José van Tol

Published in: BMC Psychiatry | Issue 1/2019

Login to get access

Abstract

Background

Major Depressive Disorder (MDD) is a psychiatric disorder with a highly recurrent character, making prevention of relapse an important clinical goal. Preventive Cognitive Therapy (PCT) has been proven effective in preventing relapse, though not for every patient. A better understanding of relapse vulnerability and working mechanisms of preventive treatment may inform effective personalized intervention strategies. Neurocognitive models of MDD suggest that abnormalities in prefrontal control over limbic emotion-processing areas during emotional processing and regulation are important in understanding relapse vulnerability. Whether changes in these neurocognitive abnormalities are induced by PCT and thus play an important role in mediating the risk for recurrent depression, is currently unclear.
In the Neurocognitive Working Mechanisms of the Prevention of Relapse In Depression (NEWPRIDE) study, we aim to 1) study neurocognitive factors underpinning the vulnerability for relapse, 2) understand the neurocognitive working mechanisms of PCT, 3) predict longitudinal treatment effects based on pre-treatment neurocognitive characteristics, and 4) validate the pupil dilation response as a marker for prefrontal activity, reflecting emotion regulation capacity and therapy success.

Methods

In this randomized controlled trial, 75 remitted recurrent MDD (rrMDD) patients will be included. Detailed clinical and cognitive measurements, fMRI scanning and pupillometry will be performed at baseline and three-month follow-up. In the interval, 50 rrMDD patients will be randomized to eight sessions of PCT and 25 rrMDD patients to a waiting list. At baseline, 25 healthy control participants will be additionally included to objectify cross-sectional residual neurocognitive abnormalities in rrMDD. After 18 months, clinical assessments of relapse status are performed to investigate which therapy induced changes predict relapse in the 50 patients allocated to PCT.

Discussion

The present trial is the first to study the neurocognitive vulnerability factors underlying relapse and mediating relapse prevention, their value for predicting PCT success and whether pupil dilation acts as a valuable marker in this regard. Ultimately, a deeper understanding of relapse prevention could contribute to the development of better targeted preventive interventions.

Trial registration

Trial registration: Netherlands Trial Register, August 18, 2015, trial number NL5219.
Literature
1.
go back to reference de Graaf R, ten Have M, van Gool CH, van Dorsselaer S. Prevalence of mental disorders and trends from 1996 to 2009. Results from the Netherlands mental health survey and incidence Study-2. Soc Psychiatry Psychiatr Epidemiol. 2010;47:203–13.CrossRef de Graaf R, ten Have M, van Gool CH, van Dorsselaer S. Prevalence of mental disorders and trends from 1996 to 2009. Results from the Netherlands mental health survey and incidence Study-2. Soc Psychiatry Psychiatr Epidemiol. 2010;47:203–13.CrossRef
2.
go back to reference Eaton WW, Shao H, Nestadt G, Lee BH, Bienvenu OJ, Zandi P. Population-based study of First onset and chronicity in major depressive disorder. Arch Gen Psychiatry. 2008;65(5):513–20.PubMedPubMedCentralCrossRef Eaton WW, Shao H, Nestadt G, Lee BH, Bienvenu OJ, Zandi P. Population-based study of First onset and chronicity in major depressive disorder. Arch Gen Psychiatry. 2008;65(5):513–20.PubMedPubMedCentralCrossRef
3.
go back to reference Solomon DA, Keller MB, Leon AC, Mueller TI, Lavori PW, Shea MT, et al. Multiple recurrences of major depressive disorder. Am J Psychiatry. 2000;157(2):229–33.PubMedCrossRef Solomon DA, Keller MB, Leon AC, Mueller TI, Lavori PW, Shea MT, et al. Multiple recurrences of major depressive disorder. Am J Psychiatry. 2000;157(2):229–33.PubMedCrossRef
4.
go back to reference Buckman JEJ, Underwood A, Clarke K, Saunders R, Hollon SD, Fearon P, et al. Risk factors for relapse and recurrence of depression in adults and how they operate: a four-phase systematic review and meta-synthesis. Clin Psychol Rev. 2018;64:13–38.PubMedPubMedCentralCrossRef Buckman JEJ, Underwood A, Clarke K, Saunders R, Hollon SD, Fearon P, et al. Risk factors for relapse and recurrence of depression in adults and how they operate: a four-phase systematic review and meta-synthesis. Clin Psychol Rev. 2018;64:13–38.PubMedPubMedCentralCrossRef
5.
go back to reference Kessing LV, Hansen MG, Andersen PK, Angst J. The predictive effect of episodes on the risk of recurrence in depressive and bipolar disorders - a life-long perspective. Acta Psychiatr Scand. 2004;109:339–44.PubMedCrossRef Kessing LV, Hansen MG, Andersen PK, Angst J. The predictive effect of episodes on the risk of recurrence in depressive and bipolar disorders - a life-long perspective. Acta Psychiatr Scand. 2004;109:339–44.PubMedCrossRef
6.
go back to reference Bockting CL, Hollon SD, Jarrett RB, Kuyken W, Dobson K. A lifetime approach to major depressive disorder: the contributions of psychological interventions in preventing relapse and recurrence. Clin Psychol Rev. 2015;41:16–26.PubMedCrossRef Bockting CL, Hollon SD, Jarrett RB, Kuyken W, Dobson K. A lifetime approach to major depressive disorder: the contributions of psychological interventions in preventing relapse and recurrence. Clin Psychol Rev. 2015;41:16–26.PubMedCrossRef
7.
go back to reference Derubeis RJ, Siegle GJ, Hollon SD. Cognitive therapy vs medications for depression: treatment outcomes and neural mechanisms. Nat Rev Neurosci. 2008;9(10):788–96.PubMedPubMedCentralCrossRef Derubeis RJ, Siegle GJ, Hollon SD. Cognitive therapy vs medications for depression: treatment outcomes and neural mechanisms. Nat Rev Neurosci. 2008;9(10):788–96.PubMedPubMedCentralCrossRef
8.
go back to reference Holmes EA, Craske MG, Graybiel AM. A call for mental-health science. Nature. 2014;511:8–10.CrossRef Holmes EA, Craske MG, Graybiel AM. A call for mental-health science. Nature. 2014;511:8–10.CrossRef
9.
go back to reference Dobson KS, Hollon SD, Dimidjian S, Schmaling KB, Kohlenberg RJ, Gallop R, et al. Randomized trial of behavioral activation, cognitive therapy, and antidepressant medication in the prevention of relapse and recurrence in major depression. J Consult Clin Psychol. 2008;76(3):468–77.PubMedPubMedCentralCrossRef Dobson KS, Hollon SD, Dimidjian S, Schmaling KB, Kohlenberg RJ, Gallop R, et al. Randomized trial of behavioral activation, cognitive therapy, and antidepressant medication in the prevention of relapse and recurrence in major depression. J Consult Clin Psychol. 2008;76(3):468–77.PubMedPubMedCentralCrossRef
10.
go back to reference Hollon SD, DeRubeis RJ, Shelton RC, Amsterdam JD, Salomon RM, O’Reardon JP, et al. Prevention of relapse following cognitive therapy vs medications in moderate to severe depression. Arch Gen Psychiatry. 2005;62(4):417–22.PubMedCrossRef Hollon SD, DeRubeis RJ, Shelton RC, Amsterdam JD, Salomon RM, O’Reardon JP, et al. Prevention of relapse following cognitive therapy vs medications in moderate to severe depression. Arch Gen Psychiatry. 2005;62(4):417–22.PubMedCrossRef
11.
go back to reference Vittengl JR, Clark LA, Dunn TW, Jarrett RB. Reducing relapse and recurrence in unipolar depression: a comparative meta-analysis of cognitive-behavioral therapy’s effects. J Consult Clin Psychol. 2007;75(3):475–88.PubMedPubMedCentralCrossRef Vittengl JR, Clark LA, Dunn TW, Jarrett RB. Reducing relapse and recurrence in unipolar depression: a comparative meta-analysis of cognitive-behavioral therapy’s effects. J Consult Clin Psychol. 2007;75(3):475–88.PubMedPubMedCentralCrossRef
12.
go back to reference Biesheuvel-Leliefeld KEM, Kok GD, Bockting CLH, Cuijpers P, Hollon SD, Van Marwijk HWJ, et al. Effectiveness of psychological interventions in preventing recurrence of depressive disorder: meta-analysis and meta-regression. J Affect Disord. 2015;174:400–10.PubMedCrossRef Biesheuvel-Leliefeld KEM, Kok GD, Bockting CLH, Cuijpers P, Hollon SD, Van Marwijk HWJ, et al. Effectiveness of psychological interventions in preventing recurrence of depressive disorder: meta-analysis and meta-regression. J Affect Disord. 2015;174:400–10.PubMedCrossRef
13.
go back to reference Bockting CLH, Schene AH, Spinhoven P, Koeter MWJ, Wouters LF, Huyser J, et al. Preventing relapse/recurrence in recurrent depression with cognitive therapy: a randomized controlled trial. J Consult Clin Psychol. 2005;73(4):647–57.PubMedCrossRef Bockting CLH, Schene AH, Spinhoven P, Koeter MWJ, Wouters LF, Huyser J, et al. Preventing relapse/recurrence in recurrent depression with cognitive therapy: a randomized controlled trial. J Consult Clin Psychol. 2005;73(4):647–57.PubMedCrossRef
14.
go back to reference Bockting CLH, Spinhoven P, Wouters LF, Koeter MWJ, Schene AH. Long-term effects of preventive cognitive therapy in recurrent depression: a 5.5-year follow-up study for the DELTA study group. J Clin Psychiatry. 2009;70(12):1621–8.PubMedCrossRef Bockting CLH, Spinhoven P, Wouters LF, Koeter MWJ, Schene AH. Long-term effects of preventive cognitive therapy in recurrent depression: a 5.5-year follow-up study for the DELTA study group. J Clin Psychiatry. 2009;70(12):1621–8.PubMedCrossRef
15.
go back to reference Bockting CLH, Smid NH, Koeter MWJ, Spinhoven P, Beck AT, Schene AH. Enduring effects of preventive cognitive therapy in adults remitted from recurrent depression: a 10 year follow-up of a randomized controlled trial. J Affect Disord. 2015;185:188–94.PubMedCrossRef Bockting CLH, Smid NH, Koeter MWJ, Spinhoven P, Beck AT, Schene AH. Enduring effects of preventive cognitive therapy in adults remitted from recurrent depression: a 10 year follow-up of a randomized controlled trial. J Affect Disord. 2015;185:188–94.PubMedCrossRef
16.
go back to reference de Jonge M, Bockting CLH, Kikkert MJ, van Dijk MK, van Schaik DJF, Peen J, et al. Preventive cognitive therapy versus care as usual in cognitive behavioral therapy responders: a randomized controlled trial. J Cross-Cult Psychol. 2019;87(6):521–9. de Jonge M, Bockting CLH, Kikkert MJ, van Dijk MK, van Schaik DJF, Peen J, et al. Preventive cognitive therapy versus care as usual in cognitive behavioral therapy responders: a randomized controlled trial. J Cross-Cult Psychol. 2019;87(6):521–9.
17.
go back to reference Bockting CLH, Klein NS, Elgersma HJ, van Rijsbergen GD, Slofstra C, Ormel J, et al. Effectiveness of preventive cognitive therapy while tapering antidepressants versus maintenance antidepressant treatment versus their combination in prevention of depressive relapse or recurrence (DRD study): a three-group, multicentre, randomised control. Lancet Psychiatry. 2018 May 1;5:401–10.PubMedCrossRef Bockting CLH, Klein NS, Elgersma HJ, van Rijsbergen GD, Slofstra C, Ormel J, et al. Effectiveness of preventive cognitive therapy while tapering antidepressants versus maintenance antidepressant treatment versus their combination in prevention of depressive relapse or recurrence (DRD study): a three-group, multicentre, randomised control. Lancet Psychiatry. 2018 May 1;5:401–10.PubMedCrossRef
18.
go back to reference Roiser JP, Elliott R, Sahakian BJ. Cognitive mechanisms of treatment in depression. Neuropsychopharmacology. 2012;37:117–36.PubMedCrossRef Roiser JP, Elliott R, Sahakian BJ. Cognitive mechanisms of treatment in depression. Neuropsychopharmacology. 2012;37:117–36.PubMedCrossRef
19.
go back to reference van Vugt MK, Hitchcock P, Shahar B, Britton W. The effects of mindfulness-based cognitive therapy on affective memory recall dynamics in depression: a mechanistic model of rumination. Hum Neurosci. 2012;6:1–13. van Vugt MK, Hitchcock P, Shahar B, Britton W. The effects of mindfulness-based cognitive therapy on affective memory recall dynamics in depression: a mechanistic model of rumination. Hum Neurosci. 2012;6:1–13.
20.
go back to reference Fu CHY, Williams SCR, Cleare AJ, Scott J, Mitterschiffthaler MT, Walsh ND, et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiatry. 2008 Sep;64(6):505–12.PubMedCrossRef Fu CHY, Williams SCR, Cleare AJ, Scott J, Mitterschiffthaler MT, Walsh ND, et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiatry. 2008 Sep;64(6):505–12.PubMedCrossRef
21.
go back to reference Ritchey M, Dolcos F, Eddington KM, Strauman TJ, Cabeza R. Neural correlates of emotional processing in depression: changes with cognitive behavioral therapy and predictors of treatment response. J Psychiatr Res. 2011;45:577–87.PubMedCrossRef Ritchey M, Dolcos F, Eddington KM, Strauman TJ, Cabeza R. Neural correlates of emotional processing in depression: changes with cognitive behavioral therapy and predictors of treatment response. J Psychiatr Res. 2011;45:577–87.PubMedCrossRef
22.
go back to reference Sankar A, Melin A, Lorenzetti V, Horton P, Costafreda SG, Fu CHY. A systematic review and meta-analysis of the neural correlates of psychological therapies in major depression. Psychiatry Res Neuroimaging. 2018;279:31–9.PubMedCrossRef Sankar A, Melin A, Lorenzetti V, Horton P, Costafreda SG, Fu CHY. A systematic review and meta-analysis of the neural correlates of psychological therapies in major depression. Psychiatry Res Neuroimaging. 2018;279:31–9.PubMedCrossRef
23.
go back to reference Disner SG, Beevers CG, Haigh E. A P, Beck AT. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci. 2011 Aug;12(8):467–77.PubMedCrossRef Disner SG, Beevers CG, Haigh E. A P, Beck AT. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci. 2011 Aug;12(8):467–77.PubMedCrossRef
24.
go back to reference Li B, Friston K, Mody M, Wang H-N, Lu H-B, Hu D-W. A brain network model for depression : from symptom understanding to disease intervention. CNS Neurosci Ther. 2018;24(11):1004–19.PubMedPubMedCentralCrossRef Li B, Friston K, Mody M, Wang H-N, Lu H-B, Hu D-W. A brain network model for depression : from symptom understanding to disease intervention. CNS Neurosci Ther. 2018;24(11):1004–19.PubMedPubMedCentralCrossRef
25.
go back to reference Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clinincal Neurosci. 1997;9:471–81.CrossRef Mayberg HS. Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clinincal Neurosci. 1997;9:471–81.CrossRef
26.
go back to reference Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci. 2012;1251:1–24.CrossRef Ochsner KN, Silvers JA, Buhle JT. Functional imaging studies of emotion regulation: a synthetic review and evolving model of the cognitive control of emotion. Ann N Y Acad Sci. 2012;1251:1–24.CrossRef
27.
go back to reference Rive MM, van Rooijen G, Veltman DJ, Phillips ML, Schene AH, Ruhé HG. Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev. 2013;37:2529–53.PubMedCrossRef Rive MM, van Rooijen G, Veltman DJ, Phillips ML, Schene AH, Ruhé HG. Neural correlates of dysfunctional emotion regulation in major depressive disorder. A systematic review of neuroimaging studies. Neurosci Biobehav Rev. 2013;37:2529–53.PubMedCrossRef
28.
go back to reference Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci. 2012;16(1):61–71.PubMedCrossRef Price JL, Drevets WC. Neural circuits underlying the pathophysiology of mood disorders. Trends Cogn Sci. 2012;16(1):61–71.PubMedCrossRef
29.
go back to reference Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. Neuroimage. 2017;151:105–16.PubMedCrossRef Zilverstand A, Parvaz MA, Goldstein RZ. Neuroimaging cognitive reappraisal in clinical populations to define neural targets for enhancing emotion regulation. A systematic review. Neuroimage. 2017;151:105–16.PubMedCrossRef
30.
go back to reference Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54(5):504–14.PubMedCrossRef Phillips ML, Drevets WC, Rauch SL, Lane R. Neurobiology of emotion perception I: the neural basis of normal emotion perception. Biol Psychiatry. 2003;54(5):504–14.PubMedCrossRef
31.
go back to reference Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008;13(9):833–57.CrossRef Phillips ML, Ladouceur CD, Drevets WC. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry. 2008;13(9):833–57.CrossRef
32.
go back to reference Holtzheimer PE, Mayberg HS. Stuck in a rut: rethinking depression and its treatment. Trends Neurosci. 2011;34(1):1–9.PubMedCrossRef Holtzheimer PE, Mayberg HS. Stuck in a rut: rethinking depression and its treatment. Trends Neurosci. 2011;34(1):1–9.PubMedCrossRef
33.
go back to reference De Raedt R, Koster EHW. Understanding vulnerability for depression from a cognitive neuroscience perspective: a reappraisal of attentional factors and a new conceptual framework. Cogn Affect Behav Neurosci. 2010;10(1):50–70.PubMedCrossRef De Raedt R, Koster EHW. Understanding vulnerability for depression from a cognitive neuroscience perspective: a reappraisal of attentional factors and a new conceptual framework. Cogn Affect Behav Neurosci. 2010;10(1):50–70.PubMedCrossRef
34.
go back to reference Dai Q, Yin X, Li H, Feng Z. Orbito-frontal cortex mechanism of inhibition of return in current and remitted depression. Hum Brain Mapp. 2018;39:2941–54.PubMedCrossRef Dai Q, Yin X, Li H, Feng Z. Orbito-frontal cortex mechanism of inhibition of return in current and remitted depression. Hum Brain Mapp. 2018;39:2941–54.PubMedCrossRef
35.
go back to reference Smoski MJ, Keng SL, Ji JL, Moore T, Minkel J, Dichter GS. Neural indicators of emotion regulation via acceptance vs reappraisal in remitted major depressive disorder. Soc Cogn Affect Neurosci. 2014; Smoski MJ, Keng SL, Ji JL, Moore T, Minkel J, Dichter GS. Neural indicators of emotion regulation via acceptance vs reappraisal in remitted major depressive disorder. Soc Cogn Affect Neurosci. 2014;
36.
go back to reference Yüksel D, Dietsche B, Konrad C, Dannlowski U, Kircher T, Krug A. Neural correlates of working memory in first episode and recurrent depression: an fMRI study. Prog Neuro-Psychopharmacology Biol Psychiatry. 2018 Jun 8;84:39–49.CrossRef Yüksel D, Dietsche B, Konrad C, Dannlowski U, Kircher T, Krug A. Neural correlates of working memory in first episode and recurrent depression: an fMRI study. Prog Neuro-Psychopharmacology Biol Psychiatry. 2018 Jun 8;84:39–49.CrossRef
37.
go back to reference Farb NAS, Anderson AK, Bloch RT, Segal ZV. Mood-linked responses in medial prefrontal cortex predict relapse in patients with recurrent unipolar depression. Biol Psychiatry. 2011;70(4):366–72.PubMedPubMedCentralCrossRef Farb NAS, Anderson AK, Bloch RT, Segal ZV. Mood-linked responses in medial prefrontal cortex predict relapse in patients with recurrent unipolar depression. Biol Psychiatry. 2011;70(4):366–72.PubMedPubMedCentralCrossRef
38.
go back to reference Ai H, Opmeer EM, Veltman DJ, van der Wee NJA, van Buchem MA, Aleman A, et al. Brain activation during emotional memory processing associated with subsequent course of depression. Neuropsychopharmacology. 2015;40:1–10.CrossRef Ai H, Opmeer EM, Veltman DJ, van der Wee NJA, van Buchem MA, Aleman A, et al. Brain activation during emotional memory processing associated with subsequent course of depression. Neuropsychopharmacology. 2015;40:1–10.CrossRef
39.
go back to reference Fu CHY, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75–83.PubMedCrossRef Fu CHY, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75–83.PubMedCrossRef
40.
go back to reference Heller AS, Johnstone T, Peterson MJ, Kolden GG, Kalin NH, Davidson RJ. Increased prefrontal cortex activity during negative emotion regulation as a predictor of depression symptom severity trajectory over 6 months. JAMA Psychiatry. 2013; Heller AS, Johnstone T, Peterson MJ, Kolden GG, Kalin NH, Davidson RJ. Increased prefrontal cortex activity during negative emotion regulation as a predictor of depression symptom severity trajectory over 6 months. JAMA Psychiatry. 2013;
41.
go back to reference Foland-Ross LC, Hamilton JP, Sacchet MD, Furman DJ, Sherdell L, Gotlib IH. Activation of the medial prefrontal and posterior cingulate cortex during encoding of negative material predicts symptom worsening in major depression. Neuroreport. 2014;25(5):324–9.PubMedPubMedCentral Foland-Ross LC, Hamilton JP, Sacchet MD, Furman DJ, Sherdell L, Gotlib IH. Activation of the medial prefrontal and posterior cingulate cortex during encoding of negative material predicts symptom worsening in major depression. Neuroreport. 2014;25(5):324–9.PubMedPubMedCentral
42.
go back to reference Haman KL, Hollon SD. Ethical considerations for cognitive-behavioral therapists in psychotherapy research trials. Cogn Behav Pract. 2009;16(2):153–63.PubMedPubMedCentralCrossRef Haman KL, Hollon SD. Ethical considerations for cognitive-behavioral therapists in psychotherapy research trials. Cogn Behav Pract. 2009;16(2):153–63.PubMedPubMedCentralCrossRef
43.
go back to reference Langenecker SA, Jenkins LM, Stange JP, Chang YS, DelDonno SR, Bessette KL, et al. Cognitive control neuroimaging measures differentiate between those with and without future recurrence of depression. NeuroImage Clin. 2018;20:1001–9.PubMedPubMedCentralCrossRef Langenecker SA, Jenkins LM, Stange JP, Chang YS, DelDonno SR, Bessette KL, et al. Cognitive control neuroimaging measures differentiate between those with and without future recurrence of depression. NeuroImage Clin. 2018;20:1001–9.PubMedPubMedCentralCrossRef
44.
go back to reference Trivedi MH, Greer TL. Cognitive dysfunction in unipolar depression: implications for treatment. J Affect Disord. 2014;152–154:19–27.PubMedCrossRef Trivedi MH, Greer TL. Cognitive dysfunction in unipolar depression: implications for treatment. J Affect Disord. 2014;152–154:19–27.PubMedCrossRef
45.
go back to reference Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol. 2001;11:240–9.PubMedCrossRef Drevets WC. Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol. 2001;11:240–9.PubMedCrossRef
46.
go back to reference Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ. The neural basis of mood-congruent processing biases in depression. Arch Gen Psychiatry. 2002;59(7):597–604.PubMedCrossRef Elliott R, Rubinsztein JS, Sahakian BJ, Dolan RJ. The neural basis of mood-congruent processing biases in depression. Arch Gen Psychiatry. 2002;59(7):597–604.PubMedCrossRef
47.
go back to reference Leppänen JM. Emotional information processing in mood disorders: a review of behavioral and neuroimaging findings. Curr Opin Psychiatry. 2006;19(1):34–9.PubMedCrossRef Leppänen JM. Emotional information processing in mood disorders: a review of behavioral and neuroimaging findings. Curr Opin Psychiatry. 2006;19(1):34–9.PubMedCrossRef
48.
go back to reference Elgersma HJ, Koster EHW, Van Tuijl LA, Hoekzema A, Penninx BWJH, Bockting CLH, et al. Attentional bias for negative, positive, and threat words in current and remitted depression. PLoS One. 2018;13(10):1–23.CrossRef Elgersma HJ, Koster EHW, Van Tuijl LA, Hoekzema A, Penninx BWJH, Bockting CLH, et al. Attentional bias for negative, positive, and threat words in current and remitted depression. PLoS One. 2018;13(10):1–23.CrossRef
49.
go back to reference Beck AT. The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatry. 2008;165:969–77.PubMedCrossRef Beck AT. The evolution of the cognitive model of depression and its neurobiological correlates. Am J Psychiatry. 2008;165:969–77.PubMedCrossRef
50.
go back to reference Farb NAS, Irving JA, Anderson AK, Segal ZV. A two-factor model of relapse/recurrence vulnerability in unipolar depression. J Abnorm Psychol. 2015;124(1):38–53.PubMedPubMedCentralCrossRef Farb NAS, Irving JA, Anderson AK, Segal ZV. A two-factor model of relapse/recurrence vulnerability in unipolar depression. J Abnorm Psychol. 2015;124(1):38–53.PubMedPubMedCentralCrossRef
51.
go back to reference Albert K, Gau V, Taylor WD, Newhouse PA. Attention bias in older women with remitted depression is associated with enhanced amygdala activity and functional connectivity. J Affect Disord. 2017;210:49–56.PubMedCrossRef Albert K, Gau V, Taylor WD, Newhouse PA. Attention bias in older women with remitted depression is associated with enhanced amygdala activity and functional connectivity. J Affect Disord. 2017;210:49–56.PubMedCrossRef
52.
go back to reference Scher CD, Ingram RE, Segal ZV. Cognitive reactivity and vulnerability: empirical evaluation of construct activation and cognitive diatheses in unipolar depression. Clin Psychol Rev. 2005;25(4):487–510.PubMedCrossRef Scher CD, Ingram RE, Segal ZV. Cognitive reactivity and vulnerability: empirical evaluation of construct activation and cognitive diatheses in unipolar depression. Clin Psychol Rev. 2005;25(4):487–510.PubMedCrossRef
53.
go back to reference Figueroa CA, Ruhé HG, Koeter MW, Spinhoven P, van der Does W, Bockting CL, et al. Cognitive reactivity versus dysfunctional cognitions and the prediction of relapse in recurrent major depressive disorder. J Clin Psychiatry. 2015;76(10):1306–12.CrossRef Figueroa CA, Ruhé HG, Koeter MW, Spinhoven P, van der Does W, Bockting CL, et al. Cognitive reactivity versus dysfunctional cognitions and the prediction of relapse in recurrent major depressive disorder. J Clin Psychiatry. 2015;76(10):1306–12.CrossRef
54.
go back to reference Elgersma HJ, de Jong PJ, van Rijsbergen GD, Kok GD, Burger H, van der Does W, et al. Cognitive reactivity, self-depressed associations, and the recurrence of depression. J Affect Disord. 2015;183:300–9.PubMedCrossRef Elgersma HJ, de Jong PJ, van Rijsbergen GD, Kok GD, Burger H, van der Does W, et al. Cognitive reactivity, self-depressed associations, and the recurrence of depression. J Affect Disord. 2015;183:300–9.PubMedCrossRef
55.
go back to reference Rosenbaum D, Hilsendegen P, Thomas M, Haeussinger FB, Nuerk HC, Fallgatter AJ, et al. Disrupted prefrontal functional connectivity during post-stress adaption in high ruminators. Sci Rep. 2018;8:1–9.CrossRef Rosenbaum D, Hilsendegen P, Thomas M, Haeussinger FB, Nuerk HC, Fallgatter AJ, et al. Disrupted prefrontal functional connectivity during post-stress adaption in high ruminators. Sci Rep. 2018;8:1–9.CrossRef
56.
go back to reference Ronold EH, Joormann J, Hammar Å. Facing recovery: emotional bias in working memory, rumination, relapse, and recurrence of major depression; an experimental paradigm conducted five years after first episode of major depression. Appl Neuropsychol Adult. 2018;1:1–12. Ronold EH, Joormann J, Hammar Å. Facing recovery: emotional bias in working memory, rumination, relapse, and recurrence of major depression; an experimental paradigm conducted five years after first episode of major depression. Appl Neuropsychol Adult. 2018;1:1–12.
57.
go back to reference Demeyer I, De Lissnyder E, Koster EHW, De Raedt R. Rumination mediates the relationship between impaired cognitive control for emotional information and depressive symptoms: a prospective study in remitted depressed adults. Behav Res Ther. 2012;50:292–7.PubMedCrossRef Demeyer I, De Lissnyder E, Koster EHW, De Raedt R. Rumination mediates the relationship between impaired cognitive control for emotional information and depressive symptoms: a prospective study in remitted depressed adults. Behav Res Ther. 2012;50:292–7.PubMedCrossRef
58.
go back to reference Figueroa CA, Mocking RJT, van Wingen G, Martens S, Ruhé HG, Schene AH. Aberrant default-mode network-hippocampus connectivity after sad memory-recall in remitted-depression. Soc Cogn Affect Neurosci. 2017; Figueroa CA, Mocking RJT, van Wingen G, Martens S, Ruhé HG, Schene AH. Aberrant default-mode network-hippocampus connectivity after sad memory-recall in remitted-depression. Soc Cogn Affect Neurosci. 2017;
59.
go back to reference van Rijsbergen GD, Bockting CLH, Burger H, Spinhoven P, Koeter MWJ, Ruhé HG, et al. Mood reactivity rather than cognitive reactivity is predictive of depressive relapse: a randomized study with 5.5-year follow-up. J Consult Clin Psychol. 2013;81(3):508–17.PubMedCrossRef van Rijsbergen GD, Bockting CLH, Burger H, Spinhoven P, Koeter MWJ, Ruhé HG, et al. Mood reactivity rather than cognitive reactivity is predictive of depressive relapse: a randomized study with 5.5-year follow-up. J Consult Clin Psychol. 2013;81(3):508–17.PubMedCrossRef
60.
go back to reference Visted E, Vøllestad J, Nielsen MB, Schanche E. Emotion regulation in current and remitted depression: a systematic review and meta-analysis. Front Psychol. 2018;9:1–20.CrossRef Visted E, Vøllestad J, Nielsen MB, Schanche E. Emotion regulation in current and remitted depression: a systematic review and meta-analysis. Front Psychol. 2018;9:1–20.CrossRef
61.
go back to reference Kanske P, Heissler J, Schönfelder S, Wessa M. Neural correlates of emotion regulation deficits in remitted depression: the influence of regulation strategy, habitual regulation use, and emotional valence. Neuroimage. 2012;61:686–93.PubMedCrossRef Kanske P, Heissler J, Schönfelder S, Wessa M. Neural correlates of emotion regulation deficits in remitted depression: the influence of regulation strategy, habitual regulation use, and emotional valence. Neuroimage. 2012;61:686–93.PubMedCrossRef
62.
go back to reference de Jonge M, Dekker JJM, Kikkert MJ, Peen J, van Rijsbergen GD, Bockting CLH. The role of affect in predicting depressive symptomatology in remitted recurrently depressed patients. J Affect Disord. 2017;210:66–71.PubMedCrossRef de Jonge M, Dekker JJM, Kikkert MJ, Peen J, van Rijsbergen GD, Bockting CLH. The role of affect in predicting depressive symptomatology in remitted recurrently depressed patients. J Affect Disord. 2017;210:66–71.PubMedCrossRef
63.
go back to reference Dichter GS, Kozink RV, McClernon FJ, Smoski MJ. Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes. J Affect Disord. 2012;136(3):1126–34.PubMedCrossRef Dichter GS, Kozink RV, McClernon FJ, Smoski MJ. Remitted major depression is characterized by reward network hyperactivation during reward anticipation and hypoactivation during reward outcomes. J Affect Disord. 2012;136(3):1126–34.PubMedCrossRef
64.
go back to reference Schiller CE, Minkel J, Smoski MJ, Dichter GS. Remitted major depression is characterized by reduced prefrontal cortex reactivity to reward loss. J Affect Disord. 2013;151(2):756–62.PubMedPubMedCentralCrossRef Schiller CE, Minkel J, Smoski MJ, Dichter GS. Remitted major depression is characterized by reduced prefrontal cortex reactivity to reward loss. J Affect Disord. 2013;151(2):756–62.PubMedPubMedCentralCrossRef
65.
go back to reference van Tol M-J, Demenescu LR, van der Wee NJA, Kortekaas R, Nielen MMA, den Boer JA, et al. Functional magnetic resonance imaging correlates of emotional word encoding and recognition in depression and anxiety disorders. Biol Psychiatry. 2012 Apr;71(7):593–602.PubMedCrossRef van Tol M-J, Demenescu LR, van der Wee NJA, Kortekaas R, Nielen MMA, den Boer JA, et al. Functional magnetic resonance imaging correlates of emotional word encoding and recognition in depression and anxiety disorders. Biol Psychiatry. 2012 Apr;71(7):593–602.PubMedCrossRef
66.
go back to reference Arnold JF, Fitzgerald DA, Fernández G, Rijpkema M, Rinck M, Eling PATM, et al. Rose or black-coloured glasses? Altered neural processing of positive events during memory formation is a trait marker of depression. J Affect Disord. 2011;131:214–23.PubMedCrossRef Arnold JF, Fitzgerald DA, Fernández G, Rijpkema M, Rinck M, Eling PATM, et al. Rose or black-coloured glasses? Altered neural processing of positive events during memory formation is a trait marker of depression. J Affect Disord. 2011;131:214–23.PubMedCrossRef
67.
go back to reference Loeffler LAK, Radke S, Habel U, Ciric R, Satterthwaite TD, Schneider F, et al. The regulation of positive and negative emotions through instructed causal attributions in lifetime depression – a functional magnetic resonance imaging study. NeuroImage Clin. 2018;20:1233–45.PubMedPubMedCentralCrossRef Loeffler LAK, Radke S, Habel U, Ciric R, Satterthwaite TD, Schneider F, et al. The regulation of positive and negative emotions through instructed causal attributions in lifetime depression – a functional magnetic resonance imaging study. NeuroImage Clin. 2018;20:1233–45.PubMedPubMedCentralCrossRef
68.
go back to reference Werner-Seidler A, Banks R, Dunn BD, Moulds ML. An investigation of the relationship between positive affect regulation and depression. Behav Res Ther. 2013;51(1):46–56.PubMedCrossRef Werner-Seidler A, Banks R, Dunn BD, Moulds ML. An investigation of the relationship between positive affect regulation and depression. Behav Res Ther. 2013;51(1):46–56.PubMedCrossRef
69.
go back to reference DelDonno SR, Jenkins LM, Crane NA, Nusslock R, Ryan KA, Shankman SA, et al. Affective traits and history of depression are related to ventral striatum connectivity. J Affect Disord. 2017 Oct 15;221:72–80.PubMedPubMedCentralCrossRef DelDonno SR, Jenkins LM, Crane NA, Nusslock R, Ryan KA, Shankman SA, et al. Affective traits and history of depression are related to ventral striatum connectivity. J Affect Disord. 2017 Oct 15;221:72–80.PubMedPubMedCentralCrossRef
70.
go back to reference Dichter GS, Felder JN, Petty C, Bizzell J, Ernst M, Smoski MJ. The effects of psychotherapy on neural responses to rewards in major depression. Biol Psychiatry. 2009;66(9):886–97.PubMedPubMedCentralCrossRef Dichter GS, Felder JN, Petty C, Bizzell J, Ernst M, Smoski MJ. The effects of psychotherapy on neural responses to rewards in major depression. Biol Psychiatry. 2009;66(9):886–97.PubMedPubMedCentralCrossRef
71.
go back to reference Heller AS, Johnstone T, Shackman AJ, Light SN, Peterson MJ, Kolden GG, et al. Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proc Natl Acad Sci. 2009;106(52):22445–50.PubMedCrossRef Heller AS, Johnstone T, Shackman AJ, Light SN, Peterson MJ, Kolden GG, et al. Reduced capacity to sustain positive emotion in major depression reflects diminished maintenance of fronto-striatal brain activation. Proc Natl Acad Sci. 2009;106(52):22445–50.PubMedCrossRef
72.
go back to reference Carl JR, Soskin DP, Kerns C, Barlow DH. Positive emotion regulation in emotional disorders: a theoretical review. Clin Psychol Rev. 2013;33(3):343–60.PubMedCrossRef Carl JR, Soskin DP, Kerns C, Barlow DH. Positive emotion regulation in emotional disorders: a theoretical review. Clin Psychol Rev. 2013;33(3):343–60.PubMedCrossRef
73.
go back to reference Matsubara T, Matsuo K, Nakashima M, Nakano M, Harada K, Watanuki T, et al. Prefrontal activation in response to emotional words in patients with bipolar disorder and major depressive disorder. Neuroimage. 2014 Jan 15;85:489–97.PubMedCrossRef Matsubara T, Matsuo K, Nakashima M, Nakano M, Harada K, Watanuki T, et al. Prefrontal activation in response to emotional words in patients with bipolar disorder and major depressive disorder. Neuroimage. 2014 Jan 15;85:489–97.PubMedCrossRef
74.
go back to reference Kerestes R, Bhagwagar Z, Nathan PJ, Meda SA, Ladouceur CD, Maloney K, et al. Prefrontal cortical response to emotional faces in individuals with major depressive disorder in remission. Psychiatry Res Neuroimag. 2012 Apr 30;202(1):30–7.CrossRef Kerestes R, Bhagwagar Z, Nathan PJ, Meda SA, Ladouceur CD, Maloney K, et al. Prefrontal cortical response to emotional faces in individuals with major depressive disorder in remission. Psychiatry Res Neuroimag. 2012 Apr 30;202(1):30–7.CrossRef
75.
go back to reference Disner SG, Beevers CG, Haigh EAP, Beck AT. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci. 2011;12(8):467–77.PubMedCrossRef Disner SG, Beevers CG, Haigh EAP, Beck AT. Neural mechanisms of the cognitive model of depression. Nat Rev Neurosci. 2011;12(8):467–77.PubMedCrossRef
76.
go back to reference Heller AS, Johnstone T, Peterson MJ, Kolden GG, Kalin NH, Davidson RJ. Increased prefrontal cortex activity during negative emotion regulation as a predictor of depression symptom severity trajectory over 6 months. JAMA psychiatry. 2013;70(11):1181–9.PubMedCrossRef Heller AS, Johnstone T, Peterson MJ, Kolden GG, Kalin NH, Davidson RJ. Increased prefrontal cortex activity during negative emotion regulation as a predictor of depression symptom severity trajectory over 6 months. JAMA psychiatry. 2013;70(11):1181–9.PubMedCrossRef
77.
go back to reference McGrath CL, Kelley ME, Holtzheimer PE, Dunlop BW, Craighead WE, Franco AR, et al. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry. 2013;70:821–9.PubMedPubMedCentralCrossRef McGrath CL, Kelley ME, Holtzheimer PE, Dunlop BW, Craighead WE, Franco AR, et al. Toward a neuroimaging treatment selection biomarker for major depressive disorder. JAMA Psychiatry. 2013;70:821–9.PubMedPubMedCentralCrossRef
78.
go back to reference Crowther A, Smoski MJ, Minkel J, Moore T, Gibbs D, Petty C, et al. Resting-state connectivity predictors of response to psychotherapy in major depressive disorder. Neuropsychopharmacology. 2015;40:1659–73.PubMedPubMedCentralCrossRef Crowther A, Smoski MJ, Minkel J, Moore T, Gibbs D, Petty C, et al. Resting-state connectivity predictors of response to psychotherapy in major depressive disorder. Neuropsychopharmacology. 2015;40:1659–73.PubMedPubMedCentralCrossRef
79.
go back to reference Kudinova AY, Burkhouse KL, Siegle G, Owens M, Woody ML, Gibb BE. Pupillary reactivity to negative stimuli prospectively predicts recurrence of major depressive disorder in women. Psychophysiology. 2016;53(12):1836–42.PubMedPubMedCentralCrossRef Kudinova AY, Burkhouse KL, Siegle G, Owens M, Woody ML, Gibb BE. Pupillary reactivity to negative stimuli prospectively predicts recurrence of major depressive disorder in women. Psychophysiology. 2016;53(12):1836–42.PubMedPubMedCentralCrossRef
80.
go back to reference Siegle GJ, Steinhauer SR, Friedman ES, Thompson WS, Thase ME. Remission prognosis for cognitive therapy for recurrent depression using the pupil: utility and neural correlates. Biol Psychiatry. 2011;69(8):726–33.PubMedPubMedCentralCrossRef Siegle GJ, Steinhauer SR, Friedman ES, Thompson WS, Thase ME. Remission prognosis for cognitive therapy for recurrent depression using the pupil: utility and neural correlates. Biol Psychiatry. 2011;69(8):726–33.PubMedPubMedCentralCrossRef
81.
go back to reference Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci. 2007;27(33):8877–84.PubMedPubMedCentralCrossRef Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J Neurosci. 2007;27(33):8877–84.PubMedPubMedCentralCrossRef
82.
go back to reference Thirion B, Pinel P, Mériaux S, Roche A, Dehaene S, Poline J-B. Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage. 2007;35(1):105–20.PubMedCrossRef Thirion B, Pinel P, Mériaux S, Roche A, Dehaene S, Poline J-B. Analysis of a large fMRI cohort: statistical and methodological issues for group analyses. Neuroimage. 2007;35(1):105–20.PubMedCrossRef
83.
go back to reference Liu F, Guo W, Yu D, Gao Q, Gao K, Xue Z, et al. Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS One. 2012;7(7):e40968.PubMedPubMedCentralCrossRef Liu F, Guo W, Yu D, Gao Q, Gao K, Xue Z, et al. Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PLoS One. 2012;7(7):e40968.PubMedPubMedCentralCrossRef
84.
go back to reference Beck AT, Rush AJ, Shaw BF, Emery G. Cognitive therapy of depression. New York: The Guilford Press; 1979. Beck AT, Rush AJ, Shaw BF, Emery G. Cognitive therapy of depression. New York: The Guilford Press; 1979.
85.
go back to reference Bockting CLH. Preventieve cognitive training bij terugkerende depressie. Houten: Bohn Stafleu van Loghum; 2009.CrossRef Bockting CLH. Preventieve cognitive training bij terugkerende depressie. Houten: Bohn Stafleu van Loghum; 2009.CrossRef
86.
go back to reference Grafton B, MacLeod C. Enhanced probing of attentional bias: the independence of anxiety-linked selectivity in attentional engagement with and disengagement from negative information. Cogn Emot. 2014;28(7):1287–302.PubMedCrossRef Grafton B, MacLeod C. Enhanced probing of attentional bias: the independence of anxiety-linked selectivity in attentional engagement with and disengagement from negative information. Cogn Emot. 2014;28(7):1287–302.PubMedCrossRef
87.
go back to reference Arntz A, Rauner M, van den Hout M. “If I feel anxious, there must be danger”: ex-consequentia reasoning in inferring danger in anxiety disorders. Behav Res Ther. 1995;33(8):917–25.PubMedCrossRef Arntz A, Rauner M, van den Hout M. “If I feel anxious, there must be danger”: ex-consequentia reasoning in inferring danger in anxiety disorders. Behav Res Ther. 1995;33(8):917–25.PubMedCrossRef
88.
go back to reference Glashouwer KA, Smulders FTY, de Jong PJ, Roefs A, Wiers RWHJ. Measuring automatic associations: validation of algorithms for the implicit association test (IAT) in a laboratory setting. J Behav Ther Exp Psychiatry. 2013;44:105–13.PubMedCrossRef Glashouwer KA, Smulders FTY, de Jong PJ, Roefs A, Wiers RWHJ. Measuring automatic associations: validation of algorithms for the implicit association test (IAT) in a laboratory setting. J Behav Ther Exp Psychiatry. 2013;44:105–13.PubMedCrossRef
89.
go back to reference van der Velde J, Gromann PM, Swart M, Wiersma D, de Haan L, Bruggeman R, et al. Alexithymia influences brain activation during emotion perception but not regulation. Soc Cogn Affect Neurosci. 2015;10(2):285–93.PubMedCrossRef van der Velde J, Gromann PM, Swart M, Wiersma D, de Haan L, Bruggeman R, et al. Alexithymia influences brain activation during emotion perception but not regulation. Soc Cogn Affect Neurosci. 2015;10(2):285–93.PubMedCrossRef
90.
go back to reference Jolles DD, Grol MJ, van Buchem MA, Rombouts SARB, Crone EA. Practice effects in the brain: changes in cerebral activation after working memory practice depend on task demands. Neuroimage. 2010;52:658–68.PubMedCrossRef Jolles DD, Grol MJ, van Buchem MA, Rombouts SARB, Crone EA. Practice effects in the brain: changes in cerebral activation after working memory practice depend on task demands. Neuroimage. 2010;52:658–68.PubMedCrossRef
91.
go back to reference Rush AJ, Gullion CM, Basco MR, Jarrett RB, Trivedi MH. The inventory of depressive symptomatology (IDS): psychometric properties. Psychol Med. 1996 May;26(3):477–86.PubMedCrossRef Rush AJ, Gullion CM, Basco MR, Jarrett RB, Trivedi MH. The inventory of depressive symptomatology (IDS): psychometric properties. Psychol Med. 1996 May;26(3):477–86.PubMedCrossRef
92.
go back to reference Spitzer RL, Williams JB, Gibbon M, First MB. The structured clinical interview for DSM-III-R (SCID). I: history, rationale, and description. Arch Gen Psychiatry. 1992;49(8):624–9.PubMedCrossRef Spitzer RL, Williams JB, Gibbon M, First MB. The structured clinical interview for DSM-III-R (SCID). I: history, rationale, and description. Arch Gen Psychiatry. 1992;49(8):624–9.PubMedCrossRef
93.
go back to reference Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54(6):1063–70.PubMedCrossRef Watson D, Clark LA, Tellegen A. Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol. 1988;54(6):1063–70.PubMedCrossRef
94.
go back to reference Masselink M, Van Roekel E, Heininga VE, Vrijen C, Nederhof E, Oldehinkel AJ. The Domains and Dimensions of Pleausure Scale (DDOPS): a novel questionnaire to measure anhedonia. Manuscript in preparation Masselink M, Van Roekel E, Heininga VE, Vrijen C, Nederhof E, Oldehinkel AJ. The Domains and Dimensions of Pleausure Scale (DDOPS): a novel questionnaire to measure anhedonia. Manuscript in preparation
95.
go back to reference Raes F, Hermans D, Williams JMG, Bijttebier P, Eelen P. A “triple W”-model of rumination on sadness: why am I feeling sad, what’s the meaning of my sadness, and wish I could stop thinking about my sadness (but I can’t!). Cognit Ther Res. 2008;32(4):526–41.CrossRef Raes F, Hermans D, Williams JMG, Bijttebier P, Eelen P. A “triple W”-model of rumination on sadness: why am I feeling sad, what’s the meaning of my sadness, and wish I could stop thinking about my sadness (but I can’t!). Cognit Ther Res. 2008;32(4):526–41.CrossRef
96.
go back to reference Gross JJ, John OP. Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. J Pers Soc Psychol. 2003;85(2):348–62.PubMedCrossRef Gross JJ, John OP. Individual differences in two emotion regulation processes: implications for affect, relationships, and well-being. J Pers Soc Psychol. 2003;85(2):348–62.PubMedCrossRef
97.
go back to reference Raes F, Daems K, Feldman G, Johnson S. D VG. A psychometric evaluation of the Dutch version of the responses to positive affect questionnaire. Psychol Belg. 2009;49(4):293–310.CrossRef Raes F, Daems K, Feldman G, Johnson S. D VG. A psychometric evaluation of the Dutch version of the responses to positive affect questionnaire. Psychol Belg. 2009;49(4):293–310.CrossRef
98.
go back to reference Weissman A, Beck A. Development and validation of the dysfunctional attitude scale: a preliminary investigation. Paper presented at the meeting of the Association for the Advancement of Behavior Therapy, Chicago, IL. 1978. p. 1–33. Weissman A, Beck A. Development and validation of the dysfunctional attitude scale: a preliminary investigation. Paper presented at the meeting of the Association for the Advancement of Behavior Therapy, Chicago, IL. 1978. p. 1–33.
99.
go back to reference Costa PT, Mccrae RR. Domains and facets: hierarchical personality assessment using the revised NEO personality inventory. J Pers Assess. 1995;64(1):21–50.PubMedCrossRef Costa PT, Mccrae RR. Domains and facets: hierarchical personality assessment using the revised NEO personality inventory. J Pers Assess. 1995;64(1):21–50.PubMedCrossRef
100.
go back to reference Van der Does W. Cognitive reactivity to sad mood: structure and validity of a new measure. Behav Res Ther. 2002;40:105–29.PubMedCrossRef Van der Does W. Cognitive reactivity to sad mood: structure and validity of a new measure. Behav Res Ther. 2002;40:105–29.PubMedCrossRef
101.
go back to reference Vorst HCM, Bermond B. Validity and reliability of Bermond-Vorst alexithymia questionnaire. Pers Individ Dif. 2001;30:413–34.CrossRef Vorst HCM, Bermond B. Validity and reliability of Bermond-Vorst alexithymia questionnaire. Pers Individ Dif. 2001;30:413–34.CrossRef
102.
go back to reference Wechsler D. Wechsler Intelligence Scale. 4th ed. San Antonio: Psychological Corporation; 2008. Wechsler D. Wechsler Intelligence Scale. 4th ed. San Antonio: Psychological Corporation; 2008.
103.
go back to reference Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the childhood trauma questionnaire. Child Abus Negl. 2003 Feb 1;27(2):169–90.CrossRef Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the childhood trauma questionnaire. Child Abus Negl. 2003 Feb 1;27(2):169–90.CrossRef
104.
go back to reference Luborsky L, Barber JP, Siqueland L, Johnson S, Najavits LM, Frank A, et al. The revised helping Alliance questionnaire (HAq-II): psychometric properties. J Psychother Pract Res. 1996;5(3):260–70.PubMedPubMedCentral Luborsky L, Barber JP, Siqueland L, Johnson S, Najavits LM, Frank A, et al. The revised helping Alliance questionnaire (HAq-II): psychometric properties. J Psychother Pract Res. 1996;5(3):260–70.PubMedPubMedCentral
105.
go back to reference Brugha TS, Cragg D. The list of threatening experiences: the reliability and validity of a brief life events questionnaire. Acta Psychiatr Scand. 1990;82(1):77–81.PubMedCrossRef Brugha TS, Cragg D. The list of threatening experiences: the reliability and validity of a brief life events questionnaire. Acta Psychiatr Scand. 1990;82(1):77–81.PubMedCrossRef
106.
go back to reference Schmand B, Bakker D, Saan R, Louman J. The Dutch Reading test for adults: a measure of premorbid intelligence level. Tijdschr Gerontol Geriatr. 1991;22:15–9.PubMed Schmand B, Bakker D, Saan R, Louman J. The Dutch Reading test for adults: a measure of premorbid intelligence level. Tijdschr Gerontol Geriatr. 1991;22:15–9.PubMed
107.
108.
109.
go back to reference Goodwin GM, Holmes EA, Andersson E, Browning M, Jones A, Lass-Hennemann J, et al. From neuroscience to evidence based psychological treatments – the promise and the challenge, ECNP march 2016, Nice. France Eur Neuropsychopharmacol. 2018;28(2):317–33.PubMedCrossRef Goodwin GM, Holmes EA, Andersson E, Browning M, Jones A, Lass-Hennemann J, et al. From neuroscience to evidence based psychological treatments – the promise and the challenge, ECNP march 2016, Nice. France Eur Neuropsychopharmacol. 2018;28(2):317–33.PubMedCrossRef
110.
go back to reference Holmes EA, Ghaderi A, Harmer CJ, Ramchandani PG, Cuijpers P, Morrison AP, et al. The lancet psychiatry commission on psychological treatments research in tomorrow’s science. Lancet Psychiatry. 2018;5(3):237–86.PubMedCrossRef Holmes EA, Ghaderi A, Harmer CJ, Ramchandani PG, Cuijpers P, Morrison AP, et al. The lancet psychiatry commission on psychological treatments research in tomorrow’s science. Lancet Psychiatry. 2018;5(3):237–86.PubMedCrossRef
Metadata
Title
Neurocognitive working mechanisms of the prevention of relapse in remitted recurrent depression (NEWPRIDE): protocol of a randomized controlled neuroimaging trial of preventive cognitive therapy
Authors
Rozemarijn S. van Kleef
Claudi L. H. Bockting
Evelien van Valen
André Aleman
Jan-Bernard C. Marsman
Marie-José van Tol
Publication date
01-12-2019
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2019
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-019-2384-0

Other articles of this Issue 1/2019

BMC Psychiatry 1/2019 Go to the issue