Skip to main content
Top
Published in: BMC Psychiatry 1/2016

Open Access 01-12-2016 | Research article

Cortical functional activity in patients with generalized anxiety disorder

Authors: Yiming Wang, Fangxian Chai, Hongming Zhang, Xingde Liu, Pingxia Xie, Lei Zheng, Lixia Yang, Lingjiang Li, Deyu Fang

Published in: BMC Psychiatry | Issue 1/2016

Login to get access

Abstract

Background

The neurological correlates of Generalised Anxiety Disorder (GAD) are not well known, however there is evidence of cortical dysregulation in patients with GAD. The aim of the study was to examine cortical functional activity in different cerebral regions in patients with GAD using electroencephalogram (EEG) nonlinear analysis to evaluate its contribution of anxiety severity.

Methods

The cohorts consisted of 64 patients diagnosed with GAD as classified by the Structured Clinical Interview for the Diagnostic and Statistical Manual of the American Psychiatric Association-IV-TR. Anxiety severity was assessed using the Hamilton Rating Scale for Anxiety (HAMA) severity score, with 7 ≤ scores ≤ 17 indicating mild anxiety as A group (n = 31) and 18 and above indicating moderate-severe anxiety as B group (n = 33). Participants with clinical levels of depression symptoms were excluded. A healthy control group comprising 30 participants was matched for age and gender. Closed eyes EEGs were conducted, and between-group differences on non-linear parameter Correlation Dimension (D2) were analyzed. The association of D2 value with HAMA scores was analyzed using multiple linear stepwise regression.

Results

Compared with the control group, D2 values were increased in anxiety groups (P < .05). For those with mild anxiety, this difference occurred in the left prefrontal regions (P < .05). For those with moderate-severe anxiety, significantly greater D2 values were observed in all of the cerebral regions, especially in the left cerebral regions and right temporal lobe (P < .01). When compared with those with mild anxiety, D2 values were significantly greater for those with moderate-severe anxiety in the right temporal lobe and all left cerebral regions except for left occipital lobe (P < .05). A positive correlation was observed between D2 values and moderate-severe anxiety HAMA scores.

Conclusions

The increased D2 values were found in the majority of cerebral regions in GAD patients, especially in the left cerebral regions and the right temporal lobe. The increased GAD severity positively correlates to the D2 values in a larger number of cerebral regions. This analysis method can potentially be used as a complementary tool to examine dysfunctional cortical activity in GAD.
Literature
1.
go back to reference Wu WY, Wang G, Susan GB, Durisala D, ANG QQ. Duloxetine versus placebo in the treatment of patients with generalized anxiety disorder in China. Chin Med J. 2011;124:3260–8.PubMed Wu WY, Wang G, Susan GB, Durisala D, ANG QQ. Duloxetine versus placebo in the treatment of patients with generalized anxiety disorder in China. Chin Med J. 2011;124:3260–8.PubMed
2.
go back to reference Paulesu E, Sambugaro E, Torti T, Danelli L, Ferri F, Scialfa G, Sberna M, Ruggiero GM, Bottini G, Sassaroli S. Neural correlates of worry in generalized anxiety disorder and in normal controls: a functional MRI study. Psychol Med. 2010;40:117–24.CrossRefPubMed Paulesu E, Sambugaro E, Torti T, Danelli L, Ferri F, Scialfa G, Sberna M, Ruggiero GM, Bottini G, Sassaroli S. Neural correlates of worry in generalized anxiety disorder and in normal controls: a functional MRI study. Psychol Med. 2010;40:117–24.CrossRefPubMed
3.
go back to reference Jetty PV, Charney DS, Goddard AW. Neurobiology of generalized anxiety disorder. Psychiatr Clin North A. 2001;24:75–97.CrossRef Jetty PV, Charney DS, Goddard AW. Neurobiology of generalized anxiety disorder. Psychiatr Clin North A. 2001;24:75–97.CrossRef
4.
go back to reference Guyer AE, Nelson EE. Amygdala and ventrolateral prefrontal cortex function during anticipated peer evaluation in pediatric social anxiety. Arch Gen Psychiatry. 2008;65:1303–12.CrossRefPubMedPubMedCentral Guyer AE, Nelson EE. Amygdala and ventrolateral prefrontal cortex function during anticipated peer evaluation in pediatric social anxiety. Arch Gen Psychiatry. 2008;65:1303–12.CrossRefPubMedPubMedCentral
5.
go back to reference Reid SA, Duke LM, Allen JJ. Resting frontal electroencephalographic asymmetry in depression: inconsistencies suggest the need to identify mediating factors. Psychophysiology. 1998;35:389–404.CrossRefPubMed Reid SA, Duke LM, Allen JJ. Resting frontal electroencephalographic asymmetry in depression: inconsistencies suggest the need to identify mediating factors. Psychophysiology. 1998;35:389–404.CrossRefPubMed
6.
go back to reference Allen JJ, Urry HL, Hitt SK, Coan JA. The stability of resting frontal elec-troencephalo graphic asymmetry in depression. Psychophysiology. 2004;41:269–80.CrossRefPubMed Allen JJ, Urry HL, Hitt SK, Coan JA. The stability of resting frontal elec-troencephalo graphic asymmetry in depression. Psychophysiology. 2004;41:269–80.CrossRefPubMed
7.
go back to reference Sumich A, Harris A, Flynn G, Whitford T, Tunstall N, Kumari V, Brammer M, Gordon E, Williams LM. Event-related potential correlates of depression, insight and negative symptoms in males with recent-onset psychosis. Clin Neurophysiol. 2006;117:1715–27.CrossRefPubMed Sumich A, Harris A, Flynn G, Whitford T, Tunstall N, Kumari V, Brammer M, Gordon E, Williams LM. Event-related potential correlates of depression, insight and negative symptoms in males with recent-onset psychosis. Clin Neurophysiol. 2006;117:1715–27.CrossRefPubMed
8.
go back to reference Bares M, Brunovsky M, Kopecek M, Stopkova P, Novak T, Kozeny J, Höschl C. Changes in QEEG prefrontal cordance as a predictor of response to anti-depressants in patients with treatment resistant depressive disorder: a pilot study. J Psychiatr Res. 2007;41:319–25.CrossRefPubMed Bares M, Brunovsky M, Kopecek M, Stopkova P, Novak T, Kozeny J, Höschl C. Changes in QEEG prefrontal cordance as a predictor of response to anti-depressants in patients with treatment resistant depressive disorder: a pilot study. J Psychiatr Res. 2007;41:319–25.CrossRefPubMed
9.
go back to reference Molina V, Montz R, Pérez-Castejón MJ, Martin-Loeches M, Carreras JL, Calcedo A, Rubia FJ. Cerebral perfusion, electrical activity and effects of serotonergic treatment in obsessive-compulsive disorder. A preliminary study. Neuropsychobiology. 1995;32:139–48.CrossRefPubMed Molina V, Montz R, Pérez-Castejón MJ, Martin-Loeches M, Carreras JL, Calcedo A, Rubia FJ. Cerebral perfusion, electrical activity and effects of serotonergic treatment in obsessive-compulsive disorder. A preliminary study. Neuropsychobiology. 1995;32:139–48.CrossRefPubMed
10.
go back to reference Acharya UR, Sudarshan VK, Adeli H, Santhosh J, Koh JE, Adeli A. Computer-aided diagnosis of depression using EEG signals. Eur Neurol. 2015;73:329–36.CrossRefPubMed Acharya UR, Sudarshan VK, Adeli H, Santhosh J, Koh JE, Adeli A. Computer-aided diagnosis of depression using EEG signals. Eur Neurol. 2015;73:329–36.CrossRefPubMed
11.
go back to reference Cusenza M, Accardo A, Monti F, Bramanti P. Linear and non-linear effects of gradient artifact filtering methods in simultaneous EEG-FMRI - biomed 2010. Biomed Sci Instrum. 2010;46:374–9.PubMed Cusenza M, Accardo A, Monti F, Bramanti P. Linear and non-linear effects of gradient artifact filtering methods in simultaneous EEG-FMRI - biomed 2010. Biomed Sci Instrum. 2010;46:374–9.PubMed
12.
go back to reference Demerdzieva A. Eeg Characteristics of Generalized Anxiety Disorder in Childhood. Acta Informatica Medica. 2011;19:9–15. Demerdzieva A. Eeg Characteristics of Generalized Anxiety Disorder in Childhood. Acta Informatica Medica. 2011;19:9–15.
13.
go back to reference Clark CR, Galletly CA, Ash DJ, Moores KA, Penrose RA, McFarlane AC. Evidence-based medicine evaluation of electrophysiological studies of the anxiety disorders. Clin EEG and neurosci. 2009;40:84–112.CrossRef Clark CR, Galletly CA, Ash DJ, Moores KA, Penrose RA, McFarlane AC. Evidence-based medicine evaluation of electrophysiological studies of the anxiety disorders. Clin EEG and neurosci. 2009;40:84–112.CrossRef
14.
go back to reference Pradhan N, Dutt DN. A nonlinear perspective in understanding the neurodynamics of EEG. Comput Biol Med. 1993;23:425–42.CrossRefPubMed Pradhan N, Dutt DN. A nonlinear perspective in understanding the neurodynamics of EEG. Comput Biol Med. 1993;23:425–42.CrossRefPubMed
15.
go back to reference Babloyantz A, Salazar JM, Nicolis C. Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett A. 1985;111:152–6.CrossRef Babloyantz A, Salazar JM, Nicolis C. Evidence of chaotic dynamics of brain activity during the sleep cycle. Phys Lett A. 1985;111:152–6.CrossRef
16.
go back to reference Carlino E, Sigaudo M, Pollo A, Benedetti F, Mongini T, Castagna F, Vighetti S, Rocca P. Nonlinear analysis of electroencephalogram at rest and during cognitive tasks in patients with schizophrenia. J Psychiatry Neurosc. 2012;37:259–66.CrossRef Carlino E, Sigaudo M, Pollo A, Benedetti F, Mongini T, Castagna F, Vighetti S, Rocca P. Nonlinear analysis of electroencephalogram at rest and during cognitive tasks in patients with schizophrenia. J Psychiatry Neurosc. 2012;37:259–66.CrossRef
17.
go back to reference Lehnertz K, Elger C. Can epileptic seizures be predicted? Evidence from non-linear time series analysis of brain electrical activity. Phys Rev Lett. 1998;80:5019–22.CrossRef Lehnertz K, Elger C. Can epileptic seizures be predicted? Evidence from non-linear time series analysis of brain electrical activity. Phys Rev Lett. 1998;80:5019–22.CrossRef
18.
go back to reference Jeong J, Chae JH, Kim SY, Han SH. Non-linear dynamical analysis of the EEG in patients with Alzheimer’s disease and vascular dementia. J Clin Neurophysiol. 2001;112:827–35.CrossRef Jeong J, Chae JH, Kim SY, Han SH. Non-linear dynamical analysis of the EEG in patients with Alzheimer’s disease and vascular dementia. J Clin Neurophysiol. 2001;112:827–35.CrossRef
19.
go back to reference Kirsch P, Besthorn C, Klein S, Rindfleisch J, Olbrich R. The dimensional complexity of the EEG during cognitive tasks reflects the impaired information processing in schizophrenic patients. Int J Psychophysiol. 2000;36:237–46.CrossRefPubMed Kirsch P, Besthorn C, Klein S, Rindfleisch J, Olbrich R. The dimensional complexity of the EEG during cognitive tasks reflects the impaired information processing in schizophrenic patients. Int J Psychophysiol. 2000;36:237–46.CrossRefPubMed
20.
go back to reference Hosseinfard B, Moradi MH, Rostami R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Programs Biomed. 2013;109:339–45.CrossRef Hosseinfard B, Moradi MH, Rostami R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Programs Biomed. 2013;109:339–45.CrossRef
21.
22.
go back to reference Zung, William WK, Richards CB, Short MJ. Self-rating depression scale in an outpatient clinic: further validation of the SDS. Arch Gen Psy. 1965;13:508–15.CrossRef Zung, William WK, Richards CB, Short MJ. Self-rating depression scale in an outpatient clinic: further validation of the SDS. Arch Gen Psy. 1965;13:508–15.CrossRef
23.
go back to reference Maier W, Buller R, Philipp M, Heuser I. The Hamilton Anxiety Scale: reliability, validity and sensitivity to change in anxiety and depressive disorders. J Affect Disord. 1988;14:61–8.CrossRefPubMed Maier W, Buller R, Philipp M, Heuser I. The Hamilton Anxiety Scale: reliability, validity and sensitivity to change in anxiety and depressive disorders. J Affect Disord. 1988;14:61–8.CrossRefPubMed
24.
go back to reference Wang J, Wu D, Chen Y, Yuan Y, Zhang M. Effects of transcranial direct current stimulation on language improvement and cortical activation in nonfluent variant primary progressive aphasia. Neurosci Lett. 2013;549:29–33.CrossRefPubMed Wang J, Wu D, Chen Y, Yuan Y, Zhang M. Effects of transcranial direct current stimulation on language improvement and cortical activation in nonfluent variant primary progressive aphasia. Neurosci Lett. 2013;549:29–33.CrossRefPubMed
25.
go back to reference Skinner JE, Carpeggiani C, Landisman CE, Fulton KW. Correlation dimension of heartbeat intervals is reduced in conscious pigs by myocardial ischemia. Circ Res. 1991;68:966–76.CrossRefPubMed Skinner JE, Carpeggiani C, Landisman CE, Fulton KW. Correlation dimension of heartbeat intervals is reduced in conscious pigs by myocardial ischemia. Circ Res. 1991;68:966–76.CrossRefPubMed
26.
go back to reference Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering (Studies in nonlinearity) (Paperback). 1994. p. 1. Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering (Studies in nonlinearity) (Paperback). 1994. p. 1.
27.
go back to reference Lacasa L, Gómez-Gardeñes J. Analytical estimation of the correlation dimension of integer lattices. Chaos. 2014;24:043101.CrossRefPubMed Lacasa L, Gómez-Gardeñes J. Analytical estimation of the correlation dimension of integer lattices. Chaos. 2014;24:043101.CrossRefPubMed
28.
go back to reference Glosser G, Zwil AS, Glosser DS, O’Connor MJ, Sperling MR. Psychiatric aspects of temporal lobe epilepsy before and after anterior temporal lobectom. J Neurol Neurosur Ps. 2000;68:53–8.CrossRef Glosser G, Zwil AS, Glosser DS, O’Connor MJ, Sperling MR. Psychiatric aspects of temporal lobe epilepsy before and after anterior temporal lobectom. J Neurol Neurosur Ps. 2000;68:53–8.CrossRef
29.
go back to reference Donald TS, Gow CA, Ross HC. “No longer gage”: Frontal lobe dysfunction and emotional changes. J Consul Clin Psychol. 1992;60:349–59.CrossRef Donald TS, Gow CA, Ross HC. “No longer gage”: Frontal lobe dysfunction and emotional changes. J Consul Clin Psychol. 1992;60:349–59.CrossRef
30.
go back to reference Zhao XH, Wang PJ, Li CB, Wang JH, Yang ZY, Hu ZH, Wu WY. Prefrontal and superior temporal lobe hyperactivity as a biological substrate of generalized anxiety disorders. Nat Med J Chin. 2006;86:955–60. Zhao XH, Wang PJ, Li CB, Wang JH, Yang ZY, Hu ZH, Wu WY. Prefrontal and superior temporal lobe hyperactivity as a biological substrate of generalized anxiety disorders. Nat Med J Chin. 2006;86:955–60.
31.
go back to reference Kalisch R, Schubert M, Jacob W, Kessler MS, Hemauer R, Wigger A, Landgraf R, Auer DP. Anxiety and hippocampus volume in the rat. Neuropsychopharmacology. 2006;31:925–32.CrossRefPubMed Kalisch R, Schubert M, Jacob W, Kessler MS, Hemauer R, Wigger A, Landgraf R, Auer DP. Anxiety and hippocampus volume in the rat. Neuropsychopharmacology. 2006;31:925–32.CrossRefPubMed
32.
go back to reference Moon CM, Kim GW, Jeong GW. Whole-brain gray matter volume abnormalities in patients with generalized anxiety disorder: voxel-based morphometry. Neuroreport. 2014;25:184–9.CrossRefPubMed Moon CM, Kim GW, Jeong GW. Whole-brain gray matter volume abnormalities in patients with generalized anxiety disorder: voxel-based morphometry. Neuroreport. 2014;25:184–9.CrossRefPubMed
33.
go back to reference Moon CM, Jeong GW. Alterations in white matter volume and its correlation with clinical characteristics in patients with generalizedanxiety disorder. Neuroradiology. 2015;57:1127–34.CrossRefPubMed Moon CM, Jeong GW. Alterations in white matter volume and its correlation with clinical characteristics in patients with generalizedanxiety disorder. Neuroradiology. 2015;57:1127–34.CrossRefPubMed
34.
go back to reference Malhi GS, Lagopoulos J. Making sense of neuroimaging in psychiatry. Acta Psychiatr Scand. 2007;1:1–18.CrossRef Malhi GS, Lagopoulos J. Making sense of neuroimaging in psychiatry. Acta Psychiatr Scand. 2007;1:1–18.CrossRef
35.
go back to reference Guo WB, Liu F, Xue ZM, Yu Y, Ma CQ, Tan CL, Sun XL, Chen JD, Liu ZN, Xiao CQ, Chen HF, Zhao JP. Abnormal neural activities in first-episode, treatment-naïve, short-illness-duration, and treatment-response patients with major depressive disorder: A resting-state fMRI study. J Affect Disord. 2011;135:326–31.CrossRefPubMed Guo WB, Liu F, Xue ZM, Yu Y, Ma CQ, Tan CL, Sun XL, Chen JD, Liu ZN, Xiao CQ, Chen HF, Zhao JP. Abnormal neural activities in first-episode, treatment-naïve, short-illness-duration, and treatment-response patients with major depressive disorder: A resting-state fMRI study. J Affect Disord. 2011;135:326–31.CrossRefPubMed
36.
go back to reference Post RM, DeLisi LE, Holcomb HH, Uhde TW, Cohen R, Buchsbaum MS. Glucose utilization in the temporal cortex of affectively ill patients: positron emission tomography. Biol Psychiat. 1987;22:545–53.CrossRefPubMed Post RM, DeLisi LE, Holcomb HH, Uhde TW, Cohen R, Buchsbaum MS. Glucose utilization in the temporal cortex of affectively ill patients: positron emission tomography. Biol Psychiat. 1987;22:545–53.CrossRefPubMed
37.
go back to reference Davies J, Lloyd KR, Jones IK, Barnes A, Pilowsky LS. Changes in regional cerebral blood flow With Venlafaxine in the Treatment of Major Depression. Am J Psychiat. 2003;160:374–6.CrossRefPubMed Davies J, Lloyd KR, Jones IK, Barnes A, Pilowsky LS. Changes in regional cerebral blood flow With Venlafaxine in the Treatment of Major Depression. Am J Psychiat. 2003;160:374–6.CrossRefPubMed
38.
go back to reference Milo TJ, Kaufman GE, Barnes WE, Konopka LM, Crayton JW, Ringelstein JG, Shirazi PH. Changes in RCBF After Electroconvulsive Therapy for Depression. J ECT. 2001;17:15–21.CrossRefPubMed Milo TJ, Kaufman GE, Barnes WE, Konopka LM, Crayton JW, Ringelstein JG, Shirazi PH. Changes in RCBF After Electroconvulsive Therapy for Depression. J ECT. 2001;17:15–21.CrossRefPubMed
39.
go back to reference Pritchard WS, Duke DW. Measuring “Chaos” in the Brain, A tutorial review of EEG dimension estimation. Brain Cognition. 1995;27:353–97.CrossRefPubMed Pritchard WS, Duke DW. Measuring “Chaos” in the Brain, A tutorial review of EEG dimension estimation. Brain Cognition. 1995;27:353–97.CrossRefPubMed
40.
go back to reference Lopes-da-Silva F. Neural mechanism underlying brain wave:from neural branches to networks. Electro Clin Neurophysiol. 1991;79:81–93.CrossRef Lopes-da-Silva F. Neural mechanism underlying brain wave:from neural branches to networks. Electro Clin Neurophysiol. 1991;79:81–93.CrossRef
41.
go back to reference Jelles B, van Birgelen JH, Slaets JP, Hekster RE, Jonkman EJ, Stam CJ. Decrease of nonlinear structure in the EEG of Alzheimer patients compeared to healthy controls. Clin Neurophysiol. 1999;110:1159–67.CrossRefPubMed Jelles B, van Birgelen JH, Slaets JP, Hekster RE, Jonkman EJ, Stam CJ. Decrease of nonlinear structure in the EEG of Alzheimer patients compeared to healthy controls. Clin Neurophysiol. 1999;110:1159–67.CrossRefPubMed
42.
go back to reference Wu DY, Dong WW. Nonlinear dynamic analysis in the EEG. Clin nerve Electrophysiol (Chin). 2003;12:335–8. Wu DY, Dong WW. Nonlinear dynamic analysis in the EEG. Clin nerve Electrophysiol (Chin). 2003;12:335–8.
43.
go back to reference Chen XL, Yao BL, Wei DN. EEG nonlinear analysis in mental arithmetic and directed. Chin J of Rehabilita Theory and Prac (Chin). 2005;11:978–80. Chen XL, Yao BL, Wei DN. EEG nonlinear analysis in mental arithmetic and directed. Chin J of Rehabilita Theory and Prac (Chin). 2005;11:978–80.
44.
go back to reference Savit R, Li D, Zhou And W, Drury I. Understanding dynamic state changes in temporal lobe epilepsy. J Clin Neurophysiol. 2001;18:246–9.CrossRefPubMed Savit R, Li D, Zhou And W, Drury I. Understanding dynamic state changes in temporal lobe epilepsy. J Clin Neurophysiol. 2001;18:246–9.CrossRefPubMed
45.
go back to reference Van L, Quyen M, Martinerie J, Navarro V, Baulac M, Varela FJ. Characterizing neurodynamic changes before seizures. J Clin Neurophysiol. 2001;18:191–208.CrossRef Van L, Quyen M, Martinerie J, Navarro V, Baulac M, Varela FJ. Characterizing neurodynamic changes before seizures. J Clin Neurophysiol. 2001;18:191–208.CrossRef
46.
go back to reference Chen XS, Wang HX, Zhang MD. Schizophrenia EEG. Nonlinear Dynamics. J Shanghai Jiaotong Uni (Medical Sciences) (Chin). 2006;26:169–71. Chen XS, Wang HX, Zhang MD. Schizophrenia EEG. Nonlinear Dynamics. J Shanghai Jiaotong Uni (Medical Sciences) (Chin). 2006;26:169–71.
47.
go back to reference Wan BK, Chen J, Ji HZ. Alzheimer’s EEG complexity and approximate entropy analysis. Beijing Biomed Eng (Chin). 2005;24:103–107,130. Wan BK, Chen J, Ji HZ. Alzheimer’s EEG complexity and approximate entropy analysis. Beijing Biomed Eng (Chin). 2005;24:103–107,130.
48.
go back to reference Schneider G, Sebel PS. Monitoring depth of anaesthesia. Eur J Anaesth. 1997;14:21–8.CrossRef Schneider G, Sebel PS. Monitoring depth of anaesthesia. Eur J Anaesth. 1997;14:21–8.CrossRef
49.
go back to reference Widman G, Schreiber T, Rehberg B, Hoeft A, Elger CE. Quantification of depth of anesthesia by nonlinear time series analysis of brain electrical activity. Phys Rev E. 2000;62:4898–903.CrossRef Widman G, Schreiber T, Rehberg B, Hoeft A, Elger CE. Quantification of depth of anesthesia by nonlinear time series analysis of brain electrical activity. Phys Rev E. 2000;62:4898–903.CrossRef
50.
go back to reference Wu DY, Jia BS, Yin L. Nonlinear EEG analysis in depth of anesthes ia monitoring. People’s Liberat Army Med (Chin). 2005;30:40–2. Wu DY, Jia BS, Yin L. Nonlinear EEG analysis in depth of anesthes ia monitoring. People’s Liberat Army Med (Chin). 2005;30:40–2.
51.
go back to reference Wang YX, Wang XM, Liu H, Chen F. EEG nonlinear analysis in the efficacy evaluation of patients with acute carbon monoxide poisoning. J of Neurol (Chin). 2012;11:177–81. Wang YX, Wang XM, Liu H, Chen F. EEG nonlinear analysis in the efficacy evaluation of patients with acute carbon monoxide poisoning. J of Neurol (Chin). 2012;11:177–81.
52.
go back to reference Stam CJ, van-Woerkom TC, Pritchard WS. Use of non-linear EEG measures to characterize EEG changes during mental activity. Electroencephalogr Clin Neurophysiol. 1996;99:214–24.CrossRefPubMed Stam CJ, van-Woerkom TC, Pritchard WS. Use of non-linear EEG measures to characterize EEG changes during mental activity. Electroencephalogr Clin Neurophysiol. 1996;99:214–24.CrossRefPubMed
53.
go back to reference Guyer AE, Lau JY, McClure-Tone EB, Parrish J, Shiffrin ND, Reynolds RC, Chen G, Blair RJ, Leibenluft E, Fox NA, Ernst M, Pine DS, Nelson EE. Human Experimentation: code of ethics of the World Medical Association. Br Med J. 1964;2:177.CrossRef Guyer AE, Lau JY, McClure-Tone EB, Parrish J, Shiffrin ND, Reynolds RC, Chen G, Blair RJ, Leibenluft E, Fox NA, Ernst M, Pine DS, Nelson EE. Human Experimentation: code of ethics of the World Medical Association. Br Med J. 1964;2:177.CrossRef
Metadata
Title
Cortical functional activity in patients with generalized anxiety disorder
Authors
Yiming Wang
Fangxian Chai
Hongming Zhang
Xingde Liu
Pingxia Xie
Lei Zheng
Lixia Yang
Lingjiang Li
Deyu Fang
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2016
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-016-0917-3

Other articles of this Issue 1/2016

BMC Psychiatry 1/2016 Go to the issue