Skip to main content
Top
Published in: BMC Psychiatry 1/2016

Open Access 01-12-2016 | Research article

Altered intrinsic insular activity predicts symptom severity in unmedicated obsessive-compulsive disorder patients: a resting state functional magnetic resonance imaging study

Authors: Yajing Zhu, Qing Fan, Haiyin Zhang, Jianyin Qiu, Ling Tan, Zeping Xiao, Shanbao Tong, Jue Chen, Yao Li

Published in: BMC Psychiatry | Issue 1/2016

Login to get access

Abstract

Background

Previous neuroimaging data indicated that the dysfunction in cortico-striato-thalamo-cortical (CSTC) circuit contributed to the neuropathological mechanism of obsessive-compulsive disorder (OCD). Whereas, emerging work has shown that the pathophysiology of OCD might be related to more widely distributed large-scale brain systems including limbic system and the salience network. This study aims to investigate the aberrant spontaneous neuronal activity within the whole brain, and its association with the symptom severity for unmedicated OCD patients.

Method

Twenty-eight unmedicated OCD adults and twenty-eight matched healthy controls were recruited for a resting state functional magnetic resonance imaging (fMRI) study. The amplitude of low-frequency fluctuation (ALFF) analysis over whole brain was performed to examine the intrinsic cerebral activity of subjects. In addition, we conducted the voxel-based Pearson’s correlative analysis to probe into the relationship between ALFF values and symptom severity for OCD patients.

Results

Our results showed that OCD patients had increased ALFF measures in the left frontopolar cortex and left orbital frontal cortex (OFC), with decreased ALFF values in the right insula. Moreover, the right insular intrinsic activity was significantly correlated with total YBOCS score (r = 0.611, p = 0.002) and compulsion score (r = 0.640, p = 0.001) for OCD patients.

Conclusion

The results showed abnormal intrinsic neuronal activity within CSTC circuit and salience network of OCD patients. Our finding of aberrant insular activity advanced the understanding of OCD pathophysiology beyond the traditional CSTC circuit. To the best of our knowledge, it is the first finding about a reduced insular activity at the resting state for unmedicated OCD patients, which might serve as an informative biomarker for OCD pathophysiology.
Literature
1.
go back to reference Calkins AW, Berman NC, Wilhelm S. Recent advances in research on cognition and emotion in OCD: a review. Curr Psychiatry Rep. 2013;15(5):1–7.CrossRef Calkins AW, Berman NC, Wilhelm S. Recent advances in research on cognition and emotion in OCD: a review. Curr Psychiatry Rep. 2013;15(5):1–7.CrossRef
2.
go back to reference Yoldascan E, Ozenli Y, Kutlu O, Topal K, Bozkurt AI. Prevalence of obsessive-compulsive disorder in Turkish university students and assessment of associated factors. BMC Psychiatry. 2009;9(1):40.CrossRefPubMedPubMedCentral Yoldascan E, Ozenli Y, Kutlu O, Topal K, Bozkurt AI. Prevalence of obsessive-compulsive disorder in Turkish university students and assessment of associated factors. BMC Psychiatry. 2009;9(1):40.CrossRefPubMedPubMedCentral
3.
go back to reference Pauls DL, Abramovitch A, Rauch SL, Geller DA. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci. 2014;15(6):410–24.CrossRefPubMed Pauls DL, Abramovitch A, Rauch SL, Geller DA. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci. 2014;15(6):410–24.CrossRefPubMed
4.
go back to reference Saxena S, Rauch SL. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin N Am. 2000;23(3):563–86.CrossRef Saxena S, Rauch SL. Functional neuroimaging and the neuroanatomy of obsessive-compulsive disorder. Psychiatr Clin N Am. 2000;23(3):563–86.CrossRef
5.
go back to reference Rotge J-Y, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M, Burbaud P, Aouizerate B. Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol Psychiatry. 2009;65(1):75–83.CrossRefPubMed Rotge J-Y, Guehl D, Dilharreguy B, Tignol J, Bioulac B, Allard M, Burbaud P, Aouizerate B. Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biol Psychiatry. 2009;65(1):75–83.CrossRefPubMed
6.
go back to reference Nakao T, Nakagawa A, Yoshiura T, Nakatani E, Nabeyama M, Yoshizato C, Kudoh A, Tada K, Yoshioka K, Kawamoto M. Brain activation of patients with obsessive-compulsive disorder during neuropsychological and symptom provocation tasks before and after symptom improvement: a functional magnetic resonance imaging study. Biol Psychiatry. 2005;57(8):901–10.CrossRefPubMed Nakao T, Nakagawa A, Yoshiura T, Nakatani E, Nabeyama M, Yoshizato C, Kudoh A, Tada K, Yoshioka K, Kawamoto M. Brain activation of patients with obsessive-compulsive disorder during neuropsychological and symptom provocation tasks before and after symptom improvement: a functional magnetic resonance imaging study. Biol Psychiatry. 2005;57(8):901–10.CrossRefPubMed
7.
go back to reference Simon D, Adler N, Kaufmann C, Kathmann N. Amygdala hyperactivation during symptom provocation in obsessive–compulsive disorder and its modulation by distraction. NeuroImage Clin. 2014;4:549–57.CrossRefPubMedPubMedCentral Simon D, Adler N, Kaufmann C, Kathmann N. Amygdala hyperactivation during symptom provocation in obsessive–compulsive disorder and its modulation by distraction. NeuroImage Clin. 2014;4:549–57.CrossRefPubMedPubMedCentral
8.
go back to reference Britton JC, Stewart SE, Killgore WD, Rosso IM, Price LM, Gold AL, Pine DS, Wilhelm S, Jenike MA, Rauch SL. Amygdala activation in response to facial expressions in pediatric obsessive–compulsive disorder. Depress Anxiety. 2010;27(7):643–51.CrossRefPubMedPubMedCentral Britton JC, Stewart SE, Killgore WD, Rosso IM, Price LM, Gold AL, Pine DS, Wilhelm S, Jenike MA, Rauch SL. Amygdala activation in response to facial expressions in pediatric obsessive–compulsive disorder. Depress Anxiety. 2010;27(7):643–51.CrossRefPubMedPubMedCentral
9.
go back to reference Glahn A, Prell T, Grosskreutz J, Peschel T, Müller-Vahl KR. Obsessive-compulsive disorder is a heterogeneous disorder: evidence from diffusion tensor imaging and magnetization transfer imaging. BMC Psychiatry. 2015;15(1):135.CrossRefPubMedPubMedCentral Glahn A, Prell T, Grosskreutz J, Peschel T, Müller-Vahl KR. Obsessive-compulsive disorder is a heterogeneous disorder: evidence from diffusion tensor imaging and magnetization transfer imaging. BMC Psychiatry. 2015;15(1):135.CrossRefPubMedPubMedCentral
10.
go back to reference Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.CrossRefPubMedPubMedCentral Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci. 2007;27(9):2349–56.CrossRefPubMedPubMedCentral
11.
go back to reference Jung WH, Kang D-H, Kim E, Shin KS, Jang JH, Kwon JS. Abnormal corticostriatal-limbic functional connectivity in obsessive–compulsive disorder during reward processing and resting-state. NeuroImage Clin. 2013;3:27–38.CrossRefPubMedPubMedCentral Jung WH, Kang D-H, Kim E, Shin KS, Jang JH, Kwon JS. Abnormal corticostriatal-limbic functional connectivity in obsessive–compulsive disorder during reward processing and resting-state. NeuroImage Clin. 2013;3:27–38.CrossRefPubMedPubMedCentral
12.
go back to reference Harrison BJ, Pujol J, Cardoner N, Deus J, Alonso P, López-Solà M, Contreras-Rodríguez O, Real E, Segalàs C, Blanco-Hinojo L. Brain corticostriatal systems and the major clinical symptom dimensions of obsessive-compulsive disorder. Biol Psychiatry. 2013;73(4):321–8.CrossRefPubMed Harrison BJ, Pujol J, Cardoner N, Deus J, Alonso P, López-Solà M, Contreras-Rodríguez O, Real E, Segalàs C, Blanco-Hinojo L. Brain corticostriatal systems and the major clinical symptom dimensions of obsessive-compulsive disorder. Biol Psychiatry. 2013;73(4):321–8.CrossRefPubMed
13.
go back to reference Shapira NA, Liu Y, He AG, Bradley MM, Lessig MC, James GA, Stein DJ, Lang PJ, Goodman WK. Brain activation by disgust-inducing pictures in obsessive-compulsive disorder. Biol Psychiatry. 2003;54(7):751–6.CrossRefPubMed Shapira NA, Liu Y, He AG, Bradley MM, Lessig MC, James GA, Stein DJ, Lang PJ, Goodman WK. Brain activation by disgust-inducing pictures in obsessive-compulsive disorder. Biol Psychiatry. 2003;54(7):751–6.CrossRefPubMed
14.
go back to reference Stern ER, Welsh RC, Fitzgerald KD, Gehring WJ, Lister JJ, Himle JA, Abelson JL, Taylor SF. Hyperactive error responses and altered connectivity in ventromedial and frontoinsular cortices in obsessive-compulsive disorder. Biol Psychiatry. 2011;69(6):583–91.CrossRefPubMedPubMedCentral Stern ER, Welsh RC, Fitzgerald KD, Gehring WJ, Lister JJ, Himle JA, Abelson JL, Taylor SF. Hyperactive error responses and altered connectivity in ventromedial and frontoinsular cortices in obsessive-compulsive disorder. Biol Psychiatry. 2011;69(6):583–91.CrossRefPubMedPubMedCentral
15.
go back to reference Remijnse PL, Nielen MM, van Balkom AJ, Cath DC, van Oppen P, Uylings HB, Veltman DJ. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch Gen Psychiatry. 2006;63(11):1225–36.CrossRefPubMed Remijnse PL, Nielen MM, van Balkom AJ, Cath DC, van Oppen P, Uylings HB, Veltman DJ. Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Arch Gen Psychiatry. 2006;63(11):1225–36.CrossRefPubMed
16.
go back to reference Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673–8.CrossRefPubMedPubMedCentral Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673–8.CrossRefPubMedPubMedCentral
17.
go back to reference Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.CrossRefPubMed Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.CrossRefPubMed
18.
go back to reference Fitzgerald KD, Welsh RC, Stern ER, Angstadt M, Hanna GL, Abelson JL, Taylor SF. Developmental alterations of frontal-striatal-thalamic connectivity in obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry. 2011;50(9):938–48. e933.CrossRefPubMedPubMedCentral Fitzgerald KD, Welsh RC, Stern ER, Angstadt M, Hanna GL, Abelson JL, Taylor SF. Developmental alterations of frontal-striatal-thalamic connectivity in obsessive-compulsive disorder. J Am Acad Child Adolesc Psychiatry. 2011;50(9):938–48. e933.CrossRefPubMedPubMedCentral
19.
go back to reference Jang JH, Kim J-H, Jung WH, Choi J-S, Jung MH, Lee J-M, Choi C-H, Kang D-H, Kwon JS. Functional connectivity in fronto-subcortical circuitry during the resting state in obsessive-compulsive disorder. Neurosci Lett. 2010;474(3):158–62.CrossRefPubMed Jang JH, Kim J-H, Jung WH, Choi J-S, Jung MH, Lee J-M, Choi C-H, Kang D-H, Kwon JS. Functional connectivity in fronto-subcortical circuitry during the resting state in obsessive-compulsive disorder. Neurosci Lett. 2010;474(3):158–62.CrossRefPubMed
20.
go back to reference Sakai Y, Narumoto J, Nishida S, Nakamae T, Yamada K, Nishimura T, Fukui K. Corticostriatal functional connectivity in non-medicated patients with obsessive-compulsive disorder. Eur Psychiatry. 2011;26(7):463–9.CrossRefPubMed Sakai Y, Narumoto J, Nishida S, Nakamae T, Yamada K, Nishimura T, Fukui K. Corticostriatal functional connectivity in non-medicated patients with obsessive-compulsive disorder. Eur Psychiatry. 2011;26(7):463–9.CrossRefPubMed
21.
go back to reference Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, López-Solà M, Hernández-Ribas R, Deus J, Alonso P, Yücel M, Pantelis C. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry. 2009;66(11):1189–200.CrossRefPubMed Harrison BJ, Soriano-Mas C, Pujol J, Ortiz H, López-Solà M, Hernández-Ribas R, Deus J, Alonso P, Yücel M, Pantelis C. Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Arch Gen Psychiatry. 2009;66(11):1189–200.CrossRefPubMed
22.
go back to reference Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11.CrossRefPubMed Fox MD, Raichle ME. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007;8(9):700–11.CrossRefPubMed
23.
go back to reference Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J, Wang Y-F, Zang Y-F. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods. 2008;172(1):137–41.CrossRefPubMedPubMedCentral Zou Q-H, Zhu C-Z, Yang Y, Zuo X-N, Long X-Y, Cao Q-J, Wang Y-F, Zang Y-F. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. J Neurosci Methods. 2008;172(1):137–41.CrossRefPubMedPubMedCentral
24.
go back to reference Hoptman MJ, Zuo X-N, Butler PD, Javitt DC, D'Angelo D, Mauro CJ, Milham MP. Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophr Res. 2010;117(1):13–20.CrossRefPubMedPubMedCentral Hoptman MJ, Zuo X-N, Butler PD, Javitt DC, D'Angelo D, Mauro CJ, Milham MP. Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophr Res. 2010;117(1):13–20.CrossRefPubMedPubMedCentral
25.
go back to reference Liu F, Guo W, Liu L, Long Z, Ma C, Xue Z, Wang Y, Li J, Hu M, Zhang J. Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: a resting-state fMRI study. J Affect Disord. 2013;146(3):401–6.CrossRefPubMed Liu F, Guo W, Liu L, Long Z, Ma C, Xue Z, Wang Y, Li J, Hu M, Zhang J. Abnormal amplitude low-frequency oscillations in medication-naive, first-episode patients with major depressive disorder: a resting-state fMRI study. J Affect Disord. 2013;146(3):401–6.CrossRefPubMed
26.
go back to reference Cui Y, Jin Z, Chen X, He Y, Liang X, Zheng Y. Abnormal baseline brain activity in drug-naïve patients with Tourette syndrome: a resting-state fMRI study. Front Hum Neurosci. 2013;7:913.PubMedCentral Cui Y, Jin Z, Chen X, He Y, Liang X, Zheng Y. Abnormal baseline brain activity in drug-naïve patients with Tourette syndrome: a resting-state fMRI study. Front Hum Neurosci. 2013;7:913.PubMedCentral
27.
go back to reference Hou J, Wu W, Lin Y, Wang J, Zhou D, Guo J, Gu S, He M, Ahmed S, Hu J. Localization of cerebral functional deficits in patients with obsessive–compulsive disorder: a resting-state fMRI study. J Affect Disord. 2012;138(3):313–21.CrossRefPubMed Hou J, Wu W, Lin Y, Wang J, Zhou D, Guo J, Gu S, He M, Ahmed S, Hu J. Localization of cerebral functional deficits in patients with obsessive–compulsive disorder: a resting-state fMRI study. J Affect Disord. 2012;138(3):313–21.CrossRefPubMed
28.
go back to reference Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, Heninger GR, Charney DS. The Yale-Brown obsessive compulsive scale: I. Development, use, and reliability. Arch Gen Psychiatry. 1989;46(11):1006–11.CrossRefPubMed Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL, Heninger GR, Charney DS. The Yale-Brown obsessive compulsive scale: I. Development, use, and reliability. Arch Gen Psychiatry. 1989;46(11):1006–11.CrossRefPubMed
29.
go back to reference Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13.PubMedPubMedCentral Chao-Gan Y, Yu-Feng Z. DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13.PubMedPubMedCentral
30.
go back to reference Friston KJ, Frith CD, Frackowiak RS, Turner R. Characterizing dynamic brain responses with fMRI: a multivariate approach. Neuroimage. 1995;2(2PA):166–72.CrossRefPubMed Friston KJ, Frith CD, Frackowiak RS, Turner R. Characterizing dynamic brain responses with fMRI: a multivariate approach. Neuroimage. 1995;2(2PA):166–72.CrossRefPubMed
31.
go back to reference Yu-Feng Z, Yong H, Chao-Zhe Z, Qing-Jiu C, Man-Qiu S, Meng L, Li-Xia T, Tian-Zi J, Yu-Feng W. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29(2):83–91.CrossRef Yu-Feng Z, Yong H, Chao-Zhe Z, Qing-Jiu C, Man-Qiu S, Meng L, Li-Xia T, Tian-Zi J, Yu-Feng W. Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev. 2007;29(2):83–91.CrossRef
32.
33.
go back to reference Ledberg A, Åkerman S, Roland PE. Estimation of the probabilities of 3D clusters in functional brain images. Neuroimage. 1998;8(2):113–28.CrossRefPubMed Ledberg A, Åkerman S, Roland PE. Estimation of the probabilities of 3D clusters in functional brain images. Neuroimage. 1998;8(2):113–28.CrossRefPubMed
34.
go back to reference Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–73.CrossRefPubMed Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996;29(3):162–73.CrossRefPubMed
35.
go back to reference Nishida S, Narumoto J, Sakai Y, Matsuoka T, Nakamae T, Yamada K, Nishimura T, Fukui K. Anterior insular volume is larger in patients with obsessive–compulsive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(4):997–1001.CrossRef Nishida S, Narumoto J, Sakai Y, Matsuoka T, Nakamae T, Yamada K, Nishimura T, Fukui K. Anterior insular volume is larger in patients with obsessive–compulsive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2011;35(4):997–1001.CrossRef
36.
go back to reference Kim J-J, Lee MC, Kim J, Kim IY, Kim SI, Han MH, Chang K-H, Kwon JS. Grey matter abnormalities in obsessive—compulsive disorder. Br J Psychiatry. 2001;179(4):330–4.CrossRefPubMed Kim J-J, Lee MC, Kim J, Kim IY, Kim SI, Han MH, Chang K-H, Kwon JS. Grey matter abnormalities in obsessive—compulsive disorder. Br J Psychiatry. 2001;179(4):330–4.CrossRefPubMed
37.
go back to reference Yoo SY, Roh M-S, Choi J-S, Kang D-H, Ha TH, Lee J-M, Kim IY, Kim SI, Kwon JS. Voxel-based morphometry study of gray matter abnormalities in obsessive-compulsive disorder. J Korean Med Sci. 2008;23(1):24–30.CrossRefPubMedPubMedCentral Yoo SY, Roh M-S, Choi J-S, Kang D-H, Ha TH, Lee J-M, Kim IY, Kim SI, Kwon JS. Voxel-based morphometry study of gray matter abnormalities in obsessive-compulsive disorder. J Korean Med Sci. 2008;23(1):24–30.CrossRefPubMedPubMedCentral
38.
go back to reference Starck G, Ljungberg M, Nilsson M, Jonsson L, Lundberg S, Ivarsson T, Ribbelin S, Ekholm S, Carlsson A, Forssell-Aronsson E, et al. A 1H magnetic resonance spectroscopy study in adults with obsessive compulsive disorder: relationship between metabolite concentrations and symptom severity. J Neural Transm. 2008;115(7):1051–62.CrossRefPubMed Starck G, Ljungberg M, Nilsson M, Jonsson L, Lundberg S, Ivarsson T, Ribbelin S, Ekholm S, Carlsson A, Forssell-Aronsson E, et al. A 1H magnetic resonance spectroscopy study in adults with obsessive compulsive disorder: relationship between metabolite concentrations and symptom severity. J Neural Transm. 2008;115(7):1051–62.CrossRefPubMed
39.
go back to reference Stern ER, Fitzgerald KD, Welsh RC, Abelson JL, Taylor SF. Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder. PLoS One. 2012;7(5):e36356.CrossRefPubMedPubMedCentral Stern ER, Fitzgerald KD, Welsh RC, Abelson JL, Taylor SF. Resting-state functional connectivity between fronto-parietal and default mode networks in obsessive-compulsive disorder. PLoS One. 2012;7(5):e36356.CrossRefPubMedPubMedCentral
40.
go back to reference Burgess PW, Dumontheil I, Gilbert SJ. The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci. 2007;11(7):290–8.CrossRefPubMed Burgess PW, Dumontheil I, Gilbert SJ. The gateway hypothesis of rostral prefrontal cortex (area 10) function. Trends Cogn Sci. 2007;11(7):290–8.CrossRefPubMed
41.
go back to reference Rauch SL, Shin LM, Dougherty DD, Alpert NM, Fischman AJ, Jenike MA. Predictors of fluvoxamine response in contamination-related obsessive compulsive disorder: a PET symptom provocation study. Neuropsychopharmacology. 2002;27(5):782–91.CrossRefPubMed Rauch SL, Shin LM, Dougherty DD, Alpert NM, Fischman AJ, Jenike MA. Predictors of fluvoxamine response in contamination-related obsessive compulsive disorder: a PET symptom provocation study. Neuropsychopharmacology. 2002;27(5):782–91.CrossRefPubMed
42.
go back to reference Kwon JS, Kim J-J, Lee DW, Lee JS, Lee DS, Kim M-S, Lyoo IK, Cho MJ, Lee MC. Neural correlates of clinical symptoms and cognitive dysfunctions in obsessive–compulsive disorder. Psychiatry Res Neuroimaging. 2003;122(1):37–47.CrossRefPubMed Kwon JS, Kim J-J, Lee DW, Lee JS, Lee DS, Kim M-S, Lyoo IK, Cho MJ, Lee MC. Neural correlates of clinical symptoms and cognitive dysfunctions in obsessive–compulsive disorder. Psychiatry Res Neuroimaging. 2003;122(1):37–47.CrossRefPubMed
43.
go back to reference den Braber A, van't Ent D, Blokland GA, van Grootheest DS, Cath DC, Veltman DJ, De Ruiter MB, Boomsma DI. An fMRI study in monozygotic twins discordant for obsessive–compulsive symptoms. Biol Psychol. 2008;79(1):91–102.CrossRef den Braber A, van't Ent D, Blokland GA, van Grootheest DS, Cath DC, Veltman DJ, De Ruiter MB, Boomsma DI. An fMRI study in monozygotic twins discordant for obsessive–compulsive symptoms. Biol Psychol. 2008;79(1):91–102.CrossRef
44.
go back to reference Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB. Reduced functional connectivity within the limbic cortico‐striato‐thalamo‐cortical loop in unmedicated adults with obsessive‐compulsive disorder. Hum Brain Mapp. 2014;35(6):2852–60.CrossRefPubMedPubMedCentral Posner J, Marsh R, Maia TV, Peterson BS, Gruber A, Simpson HB. Reduced functional connectivity within the limbic cortico‐striato‐thalamo‐cortical loop in unmedicated adults with obsessive‐compulsive disorder. Hum Brain Mapp. 2014;35(6):2852–60.CrossRefPubMedPubMedCentral
45.
go back to reference Milad MR, Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci. 2012;16(1):43–51.CrossRefPubMed Milad MR, Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends Cogn Sci. 2012;16(1):43–51.CrossRefPubMed
46.
go back to reference Piras F, Piras F, Chiapponi C, Girardi P, Caltagirone C, Spalletta G. Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. Cortex. 2015;62:89–108.CrossRefPubMed Piras F, Piras F, Chiapponi C, Girardi P, Caltagirone C, Spalletta G. Widespread structural brain changes in OCD: a systematic review of voxel-based morphometry studies. Cortex. 2015;62:89–108.CrossRefPubMed
47.
go back to reference Whiteside SP, Port JD, Abramowitz JS. A meta–analysis of functional neuroimaging in obsessive–compulsive disorder. Psychiatry Res Neuroimaging. 2004;132(1):69–79.CrossRefPubMed Whiteside SP, Port JD, Abramowitz JS. A meta–analysis of functional neuroimaging in obsessive–compulsive disorder. Psychiatry Res Neuroimaging. 2004;132(1):69–79.CrossRefPubMed
48.
go back to reference Maltby N, Tolin DF, Worhunsky P, O'Keefe TM, Kiehl KA. Dysfunctional action monitoring hyperactivates frontal–striatal circuits in obsessive–compulsive disorder: an event-related fMRI study. Neuroimage. 2005;24(2):495–503.CrossRefPubMed Maltby N, Tolin DF, Worhunsky P, O'Keefe TM, Kiehl KA. Dysfunctional action monitoring hyperactivates frontal–striatal circuits in obsessive–compulsive disorder: an event-related fMRI study. Neuroimage. 2005;24(2):495–503.CrossRefPubMed
49.
go back to reference Rauch SL, Wedig MM, Wright CI, Martis B, McMullin KG, Shin LM, Cannistraro PA, Wilhelm S. Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive–compulsive disorder. Biol Psychiatry. 2007;61(3):330–6.CrossRefPubMed Rauch SL, Wedig MM, Wright CI, Martis B, McMullin KG, Shin LM, Cannistraro PA, Wilhelm S. Functional magnetic resonance imaging study of regional brain activation during implicit sequence learning in obsessive–compulsive disorder. Biol Psychiatry. 2007;61(3):330–6.CrossRefPubMed
50.
go back to reference Baxter LR. Basal ganglia systems in ritualistic social displays: reptiles and humans; function and illness. Physiol Behav. 2003;79(3):451–60.CrossRefPubMed Baxter LR. Basal ganglia systems in ritualistic social displays: reptiles and humans; function and illness. Physiol Behav. 2003;79(3):451–60.CrossRefPubMed
Metadata
Title
Altered intrinsic insular activity predicts symptom severity in unmedicated obsessive-compulsive disorder patients: a resting state functional magnetic resonance imaging study
Authors
Yajing Zhu
Qing Fan
Haiyin Zhang
Jianyin Qiu
Ling Tan
Zeping Xiao
Shanbao Tong
Jue Chen
Yao Li
Publication date
01-12-2016
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2016
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-016-0806-9

Other articles of this Issue 1/2016

BMC Psychiatry 1/2016 Go to the issue