Skip to main content
Top
Published in: BMC Psychiatry 1/2015

Open Access 01-12-2015 | Research article

Multimodal functional and structural neuroimaging investigation of major depressive disorder following treatment with duloxetine

Authors: Cynthia HY Fu, Sergi G Costafreda, Anjali Sankar, Tracey M Adams, Mark M Rasenick, Peng Liu, Robert Donati, Luigi A Maglanoc, Paul Horton, Lauren B Marangell

Published in: BMC Psychiatry | Issue 1/2015

Login to get access

Abstract

Background

Longitudinal neuroimaging studies of major depressive disorder (MDD) have most commonly assessed the effects of antidepressants from the serotonin reuptake inhibitor class and usually reporting a single measure. Multimodal neuroimaging assessments were acquired from MDD patients during an acute depressive episode with serial measures during a 12-week treatment with the serotonin-norepinephrine reuptake inhibitor (SNRI) duloxetine.

Methods

Participants were medication-free MDD patients (n = 32; mean age 40.2 years) in an acute depressive episode and healthy controls matched for age, gender, and IQ (n = 25; mean age 38.8 years). MDD patients received treatment with duloxetine 60 mg daily for 12 weeks with an optional dose increase to 120 mg daily after 8 weeks. All participants had serial imaging at weeks 0, 1, 8, and 12 on a 3 Tesla magnetic resonance imaging (MRI) scanner. Neuroimaging tasks included emotional facial processing, negative attentional bias (emotional Stroop), resting state functional MRI and structural MRI.

Results

A significant group by time interaction was identified in the anterior default mode network in which MDD patients showed increased connectivity with treatment, while there were no significant changes in healthy participants. In the emotional Stroop task, increased posterior cingulate activation in MDD patients normalized following treatment. No significant group by time effects were observed for happy or sad facial processing, including in amygdala responsiveness, or in regional cerebral volumes. Reduced baseline resting state connectivity within the orbitofrontal component of the default mode network was predictive of clinical response. An early increase in hippocampal volume was predictive of clinical response.

Conclusions

Baseline resting state functional connectivity was predictive of subsequent clinical response. Complementary effects of treatment were observed from the functional neuroimaging correlates of affective facial expressions, negative attentional bias, and resting state. No significant effects were observed in affective facial processing, while the interaction effect in negative attentional bias and individual group effects in resting state connectivity could be related to the SNRI class of antidepressant medication. The specificity of the observed effects to SNRI pharmacological treatments requires further investigation.

Trial registration

Registered at clinicaltrials.gov (NCT01051466).
Appendix
Available only for authorised users
Literature
1.
go back to reference Diener C, Kuehner C, Brusniak W, Ubl B, Wessa M, Flor H. A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression. Neuroimage. 2012;61:677–85.CrossRefPubMed Diener C, Kuehner C, Brusniak W, Ubl B, Wessa M, Flor H. A meta-analysis of neurofunctional imaging studies of emotion and cognition in major depression. Neuroimage. 2012;61:677–85.CrossRefPubMed
2.
go back to reference Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: a meta-analysis and a new integration of base line activation and neural response data. Am J Psychiatry. 2012;169:693–703.CrossRefPubMed Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: a meta-analysis and a new integration of base line activation and neural response data. Am J Psychiatry. 2012;169:693–703.CrossRefPubMed
3.
go back to reference Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry. 2001;50:651–8.CrossRefPubMed Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA. Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry. 2001;50:651–8.CrossRefPubMed
4.
go back to reference Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry. 2004;61:877–89.CrossRefPubMed Fu CH, Williams SC, Cleare AJ, Brammer MJ, Walsh ND, Kim J, et al. Attenuation of the neural response to sad faces in major depression by antidepressant treatment: a prospective, event-related functional magnetic resonance imaging study. Arch Gen Psychiatry. 2004;61:877–89.CrossRefPubMed
5.
go back to reference Delaveau P, Jabourian M, Lemogne C, Guionnet S, Bergouignan L, Fossati P. Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord. 2011;130:66–74.CrossRefPubMed Delaveau P, Jabourian M, Lemogne C, Guionnet S, Bergouignan L, Fossati P. Brain effects of antidepressants in major depression: a meta-analysis of emotional processing studies. J Affect Disord. 2011;130:66–74.CrossRefPubMed
6.
go back to reference Fu CH, Mourao-Miranda J, Costafreda SG, Khanna A, Marquand A, Williams SCR, et al. Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry. 2008;63:656–62.CrossRefPubMed Fu CH, Mourao-Miranda J, Costafreda SG, Khanna A, Marquand A, Williams SCR, et al. Pattern classification of sad facial processing: toward the development of neurobiological markers in depression. Biol Psychiatry. 2008;63:656–62.CrossRefPubMed
7.
go back to reference Fu CH, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75–83.CrossRefPubMed Fu CH, Steiner H, Costafreda SG. Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis. 2013;52:75–83.CrossRefPubMed
8.
go back to reference Sexton CE, Mackay CE, Ebmeier KP. A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. Am J Geriatr Psychiatry. 2013;21:184–95.CrossRefPubMed Sexton CE, Mackay CE, Ebmeier KP. A systematic review and meta-analysis of magnetic resonance imaging studies in late-life depression. Am J Geriatr Psychiatry. 2013;21:184–95.CrossRefPubMed
9.
go back to reference Lisiecka D, Meisenzahl E, Scheuerecker J, Schoepf V, Whitty P, Chaney A, et al. Neural correlates of treatment outcome in major depression. Int J Neuropsychopharmacol. 2011;14:521–34.CrossRefPubMed Lisiecka D, Meisenzahl E, Scheuerecker J, Schoepf V, Whitty P, Chaney A, et al. Neural correlates of treatment outcome in major depression. Int J Neuropsychopharmacol. 2011;14:521–34.CrossRefPubMed
10.
go back to reference Frodl T, Scheuerecker J, Schoepf V, Linn J, Koutsouleris N, Bokde AL, et al. Different effects of mirtazapine and venlafaxine on brain activation: an open randomized controlled fMRI study. J Clin Psychiatry. 2011;72:448–57.CrossRefPubMed Frodl T, Scheuerecker J, Schoepf V, Linn J, Koutsouleris N, Bokde AL, et al. Different effects of mirtazapine and venlafaxine on brain activation: an open randomized controlled fMRI study. J Clin Psychiatry. 2011;72:448–57.CrossRefPubMed
11.
go back to reference Outhred T, Hawkshead BE, Wager TD, Das P, Malhi GS, Kemp AH. Acute neural effects of selective serotonin reuptake inhibitors versus noradrenaline reuptake inhibitors on emotion processing: Implications for differential treatment efficacy. NeurosciBiobehav Rev. 2013;37:1786–800. Outhred T, Hawkshead BE, Wager TD, Das P, Malhi GS, Kemp AH. Acute neural effects of selective serotonin reuptake inhibitors versus noradrenaline reuptake inhibitors on emotion processing: Implications for differential treatment efficacy. NeurosciBiobehav Rev. 2013;37:1786–800.
12.
go back to reference Wagner G, Koch K, Schachtzabel C, Sobanski T, Reichenbach JR, Sauer H, et al. Differential effects of serotonergic and noradrenergic antidepressants on brain activity during a cognitive control task and neurofunctional prediction of treatment outcome in patients with depression. J Psychiatry Neurosci. 2010;35:247–57.CrossRefPubMedPubMedCentral Wagner G, Koch K, Schachtzabel C, Sobanski T, Reichenbach JR, Sauer H, et al. Differential effects of serotonergic and noradrenergic antidepressants on brain activity during a cognitive control task and neurofunctional prediction of treatment outcome in patients with depression. J Psychiatry Neurosci. 2010;35:247–57.CrossRefPubMedPubMedCentral
13.
go back to reference American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. Washington, DC: American Psychiatric Association; 2000.CrossRef American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision. Washington, DC: American Psychiatric Association; 2000.CrossRef
14.
go back to reference First MB, Spitzer RL, Gibbon M, Williams JW. Structured Clinical Interview for DSM-IV Axis I Disorders-Research Version, Patient Edition (SCID-I/P). New York, NY: Biometrics Research Department, New York State Psychiatric Institute; 1997. First MB, Spitzer RL, Gibbon M, Williams JW. Structured Clinical Interview for DSM-IV Axis I Disorders-Research Version, Patient Edition (SCID-I/P). New York, NY: Biometrics Research Department, New York State Psychiatric Institute; 1997.
15.
go back to reference Hamilton M. A rating scale for depression. J NeurolNeurosurg Psychiatry. 1960;23:56–62.CrossRef Hamilton M. A rating scale for depression. J NeurolNeurosurg Psychiatry. 1960;23:56–62.CrossRef
16.
go back to reference Hamilton M. Development of a rating scale for primary depressive illness. Br J SocClin Psychol. 1967;6:278–96. Hamilton M. Development of a rating scale for primary depressive illness. Br J SocClin Psychol. 1967;6:278–96.
17.
go back to reference Wechsler D. Wechsler Adult Intelligence Scale - 3rd UK Edition (WAIS®-III UK). Oxford, United Kingdom: Pearson UK; 1999. Wechsler D. Wechsler Adult Intelligence Scale - 3rd UK Edition (WAIS®-III UK). Oxford, United Kingdom: Pearson UK; 1999.
18.
go back to reference Posner K, Brown GK, Stanley B, Brent DA, Yershova KV, Oquendo MA, et al. The Columbia-Suicide Severity Rating Scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry. 2011;168:1266–77.CrossRefPubMedPubMedCentral Posner K, Brown GK, Stanley B, Brent DA, Yershova KV, Oquendo MA, et al. The Columbia-Suicide Severity Rating Scale: initial validity and internal consistency findings from three multisite studies with adolescents and adults. Am J Psychiatry. 2011;168:1266–77.CrossRefPubMedPubMedCentral
19.
20.
go back to reference Guy W. ECDEU Assessment Manual for Psychopharmacology-Revised. Rockville, MD: National Institute of Mental Health, Psychopharmacology Research Branch; 1976. Guy W. ECDEU Assessment Manual for Psychopharmacology-Revised. Rockville, MD: National Institute of Mental Health, Psychopharmacology Research Branch; 1976.
21.
go back to reference Sheehan DV, Harnett-Sheehan K, Raj BA. The measurement of disability. IntClinPsychopharmacol. 1996;11:89S–95. Sheehan DV, Harnett-Sheehan K, Raj BA. The measurement of disability. IntClinPsychopharmacol. 1996;11:89S–95.
22.
go back to reference Fu CH, Williams SC, Cleare AJ, Scott J, Mitterschiffthaler MT, Walsh ND, et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiatry. 2008;64:505–12.CrossRefPubMed Fu CH, Williams SC, Cleare AJ, Scott J, Mitterschiffthaler MT, Walsh ND, et al. Neural responses to sad facial expressions in major depression following cognitive behavioral therapy. Biol Psychiatry. 2008;64:505–12.CrossRefPubMed
23.
go back to reference Fu CHY, Williams SCR, Brammer MJ, Suckling J, Kim J, Cleare AJ, et al. Neural responses to happy facial expressions in major depression following antidepressant treatment. Am J Psychiatry. 2007;164:599–607.CrossRefPubMed Fu CHY, Williams SCR, Brammer MJ, Suckling J, Kim J, Cleare AJ, et al. Neural responses to happy facial expressions in major depression following antidepressant treatment. Am J Psychiatry. 2007;164:599–607.CrossRefPubMed
24.
go back to reference Mitterschiffthaler MT, Williams SCR, Walsh ND, Cleare AJ, Donaldson C, Scott J, et al. Neural basis of the emotional Stroop interference effect in major depression. Psychol Med. 2008;38:247–56.CrossRefPubMed Mitterschiffthaler MT, Williams SCR, Walsh ND, Cleare AJ, Donaldson C, Scott J, et al. Neural basis of the emotional Stroop interference effect in major depression. Psychol Med. 2008;38:247–56.CrossRefPubMed
25.
go back to reference Ekman P, Friesen WV. Pictures of Facial Affect. Palo Alto, CA: Consulting Psychologists Press; 1976. Ekman P, Friesen WV. Pictures of Facial Affect. Palo Alto, CA: Consulting Psychologists Press; 1976.
26.
go back to reference Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012;61:1402–18.CrossRefPubMedPubMedCentral Reuter M, Schmansky NJ, Rosas HD, Fischl B. Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage. 2012;61:1402–18.CrossRefPubMedPubMedCentral
27.
28.
go back to reference Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R SocLond B Biol Sci. 2005;360:1001–13.CrossRef Beckmann CF, DeLuca M, Devlin JT, Smith SM. Investigations into resting-state connectivity using independent component analysis. Philos Trans R SocLond B Biol Sci. 2005;360:1001–13.CrossRef
29.
go back to reference Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain's default network. Neuron. 2010;65:550–62.CrossRefPubMedPubMedCentral Andrews-Hanna JR, Reidler JS, Sepulcre J, Poulin R, Buckner RL. Functional-anatomic fractionation of the brain's default network. Neuron. 2010;65:550–62.CrossRefPubMedPubMedCentral
30.
go back to reference Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.CrossRefPubMed Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.CrossRefPubMed
31.
go back to reference Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25.CrossRefPubMed Nichols TE, Holmes AP. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp. 2002;15:1–25.CrossRefPubMed
32.
go back to reference Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localization in cluster inference. Neuroimage. 2009;44:83–98.CrossRefPubMed Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localization in cluster inference. Neuroimage. 2009;44:83–98.CrossRefPubMed
33.
go back to reference Hudson JI, Wohlreich MM, Kajdasz DK, Mallinckrodt CH, Watkin JG, Martynov OV. Safety and tolerability of duloxetine in the treatment of major depressive disorder: analysis of pooled data from eight placebo-controlled clinical trials. Hum Psychopharmacol. 2005;20:327–41.CrossRefPubMed Hudson JI, Wohlreich MM, Kajdasz DK, Mallinckrodt CH, Watkin JG, Martynov OV. Safety and tolerability of duloxetine in the treatment of major depressive disorder: analysis of pooled data from eight placebo-controlled clinical trials. Hum Psychopharmacol. 2005;20:327–41.CrossRefPubMed
34.
go back to reference Arnone D, McKie S, Elliott R, Thomas EJ, Downey D, Juhasz G, et al. Increased amygdala responses to sad but not fearful faces in major depression: relation to mood state and pharmacological treatment. Am J Psychiatry. 2012;169:841–50.CrossRefPubMed Arnone D, McKie S, Elliott R, Thomas EJ, Downey D, Juhasz G, et al. Increased amygdala responses to sad but not fearful faces in major depression: relation to mood state and pharmacological treatment. Am J Psychiatry. 2012;169:841–50.CrossRefPubMed
35.
go back to reference Costafreda SG, Brammer MJ, David AS, Fu CH. Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 pet and fmri studies. Brain Res Rev. 2008;58:57–70.CrossRefPubMed Costafreda SG, Brammer MJ, David AS, Fu CH. Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 pet and fmri studies. Brain Res Rev. 2008;58:57–70.CrossRefPubMed
36.
go back to reference Victor TA, Furey ML, Fromm SJ, Öhman A, Drevets WC. Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder. Arch Gen Psychiatry. 2010;67:1128–38.CrossRefPubMedPubMedCentral Victor TA, Furey ML, Fromm SJ, Öhman A, Drevets WC. Relationship between amygdala responses to masked faces and mood state and treatment in major depressive disorder. Arch Gen Psychiatry. 2010;67:1128–38.CrossRefPubMedPubMedCentral
37.
go back to reference Fu CHY, Reed LJ, Meyer JH, Houle S, Eisfeld B, Kennedy S, et al. Noradrenergic dysfunction in the prefrontal cortex in depression: an [15O] - H2O PET study of the neuromodulatory effects of clonidine. Biol Psychiatry. 2001;49:317–25.CrossRefPubMed Fu CHY, Reed LJ, Meyer JH, Houle S, Eisfeld B, Kennedy S, et al. Noradrenergic dysfunction in the prefrontal cortex in depression: an [15O] - H2O PET study of the neuromodulatory effects of clonidine. Biol Psychiatry. 2001;49:317–25.CrossRefPubMed
38.
go back to reference Beck AT. Cognitive Therapy and the Emotional Disorders. Meridian: New York, NY; 1976. Beck AT. Cognitive Therapy and the Emotional Disorders. Meridian: New York, NY; 1976.
39.
go back to reference MacLeod CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull. 1991;109:163–203.CrossRefPubMed MacLeod CM. Half a century of research on the Stroop effect: an integrative review. Psychol Bull. 1991;109:163–203.CrossRefPubMed
40.
go back to reference Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl AcadSci U S A. 2001;98:676–82.CrossRef Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl AcadSci U S A. 2001;98:676–82.CrossRef
41.
go back to reference Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, et al. Antidepressant effect on connectivity of the mood-regulating circuit: an fMRI study. Neuropsychopharmacology. 2005;30:1334–44.PubMed Anand A, Li Y, Wang Y, Wu J, Gao S, Bukhari L, et al. Antidepressant effect on connectivity of the mood-regulating circuit: an fMRI study. Neuropsychopharmacology. 2005;30:1334–44.PubMed
42.
go back to reference Li B, Liu L, Friston KJ, Shen H, Wang L, Zeng LL, et al. A treatment-resistant default mode subnetwork in major depression. Biol Psychiatry. 2013;74:48–54.CrossRefPubMed Li B, Liu L, Friston KJ, Shen H, Wang L, Zeng LL, et al. A treatment-resistant default mode subnetwork in major depression. Biol Psychiatry. 2013;74:48–54.CrossRefPubMed
43.
go back to reference Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain StructFunct. 2008;213:93–118.CrossRef Drevets WC, Price JL, Furey ML. Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain StructFunct. 2008;213:93–118.CrossRef
44.
go back to reference Fu CH, Costafreda SG. Neuroimaging-based biomarkers in psychiatry: clinical opportunities of a paradigm shift. Can J Psychiatry. 2013;58:499–508.PubMed Fu CH, Costafreda SG. Neuroimaging-based biomarkers in psychiatry: clinical opportunities of a paradigm shift. Can J Psychiatry. 2013;58:499–508.PubMed
45.
go back to reference Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62:429–37.CrossRefPubMedPubMedCentral Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, Kenna H, et al. Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biol Psychiatry. 2007;62:429–37.CrossRefPubMedPubMedCentral
46.
go back to reference Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J. Depression, rumination and the default network. SocCogn Affect Neurosci. 2011;6:548–55.CrossRef Berman MG, Peltier S, Nee DE, Kross E, Deldin PJ, Jonides J. Depression, rumination and the default network. SocCogn Affect Neurosci. 2011;6:548–55.CrossRef
47.
go back to reference Zhu X, Wang X, Xiao J, Liao J, Zhong M, Wang W, et al. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol Psychiatry. 2012;71:611–7.CrossRefPubMed Zhu X, Wang X, Xiao J, Liao J, Zhong M, Wang W, et al. Evidence of a dissociation pattern in resting-state default mode network connectivity in first-episode, treatment-naive major depression patients. Biol Psychiatry. 2012;71:611–7.CrossRefPubMed
48.
go back to reference Korgaonkar MS, Williams LM, Song YJ, Usherwood T, Grieve SM. Diffusion tensor imaging predictors of treatment outcomes in major depressive disorder. Br J Psychiatry. 2014;205:321–8.CrossRefPubMed Korgaonkar MS, Williams LM, Song YJ, Usherwood T, Grieve SM. Diffusion tensor imaging predictors of treatment outcomes in major depressive disorder. Br J Psychiatry. 2014;205:321–8.CrossRefPubMed
49.
go back to reference Khalsa S, Mayhew SD, Chechlacz M, Bagary M, Bagshaw AP. The structural and functional connectivity of the posterior cingulate cortex: Comparison between deterministic and probabilistic tractography for the investigation of structure–function relationships. Neuroimage. 2014;102:118–27.CrossRefPubMed Khalsa S, Mayhew SD, Chechlacz M, Bagary M, Bagshaw AP. The structural and functional connectivity of the posterior cingulate cortex: Comparison between deterministic and probabilistic tractography for the investigation of structure–function relationships. Neuroimage. 2014;102:118–27.CrossRefPubMed
50.
go back to reference Sämann PG, Höhn D, Chechko N, Kloiber S, Lucae S, Ising M, et al. Prediction of antidepressant treatment response from gray matter volume across diagnostic categories. EurNeuropsychopharmacol. 2013;23:1503–15.CrossRef Sämann PG, Höhn D, Chechko N, Kloiber S, Lucae S, Ising M, et al. Prediction of antidepressant treatment response from gray matter volume across diagnostic categories. EurNeuropsychopharmacol. 2013;23:1503–15.CrossRef
51.
go back to reference Arnone D, McKie S, Elliott R, Juhasz G, Thomas EJ, Downey D, et al. State-dependent changes in hippocampal grey matter in depression. Mol Psychiatry. 2012;18:1265–72.CrossRefPubMed Arnone D, McKie S, Elliott R, Juhasz G, Thomas EJ, Downey D, et al. State-dependent changes in hippocampal grey matter in depression. Mol Psychiatry. 2012;18:1265–72.CrossRefPubMed
52.
go back to reference Frodl T, Jäger M, Smajstrlova I, Born C, Bottlender R, Palladino T, et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci. 2008;33:423–30.PubMedPubMedCentral Frodl T, Jäger M, Smajstrlova I, Born C, Bottlender R, Palladino T, et al. Effect of hippocampal and amygdala volumes on clinical outcomes in major depression: a 3-year prospective magnetic resonance imaging study. J Psychiatry Neurosci. 2008;33:423–30.PubMedPubMedCentral
53.
go back to reference Bambico FR, Belzung C. Novel insights into depression and antidepressants: a synergy between synaptogenesis and neurogenesis? Curr Top BehavNeurosci. 2013;15:243–91. Bambico FR, Belzung C. Novel insights into depression and antidepressants: a synergy between synaptogenesis and neurogenesis? Curr Top BehavNeurosci. 2013;15:243–91.
54.
go back to reference Sauder CL, Hajcak G, Angstadt M, Phan KL. Test-retest reliability of amygdala response to emotional faces. Psychophysiology. 2013;50:1147–56.CrossRefPubMed Sauder CL, Hajcak G, Angstadt M, Phan KL. Test-retest reliability of amygdala response to emotional faces. Psychophysiology. 2013;50:1147–56.CrossRefPubMed
55.
go back to reference Poppe AB, Wisner K, Atluri G, Lim KO, Kumar V, Macdonald 3rd AW. Toward a neurometric foundation for probabilistic independent component analysis of fMRI data. Cogn Affect BehavNeurosci. 2013;13:641–59.CrossRef Poppe AB, Wisner K, Atluri G, Lim KO, Kumar V, Macdonald 3rd AW. Toward a neurometric foundation for probabilistic independent component analysis of fMRI data. Cogn Affect BehavNeurosci. 2013;13:641–59.CrossRef
Metadata
Title
Multimodal functional and structural neuroimaging investigation of major depressive disorder following treatment with duloxetine
Authors
Cynthia HY Fu
Sergi G Costafreda
Anjali Sankar
Tracey M Adams
Mark M Rasenick
Peng Liu
Robert Donati
Luigi A Maglanoc
Paul Horton
Lauren B Marangell
Publication date
01-12-2015
Publisher
BioMed Central
Published in
BMC Psychiatry / Issue 1/2015
Electronic ISSN: 1471-244X
DOI
https://doi.org/10.1186/s12888-015-0457-2

Other articles of this Issue 1/2015

BMC Psychiatry 1/2015 Go to the issue