Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Obesity | Research article

A cross-sectional, exploratory survey on health-relevant free-time activities and body mass index in preschool children in urban and rural settings of Austria

Authors: J. Robatsch, P. Voitl, Susanne C. Diesner-Treiber

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

The increasing prevalence of obesity is among the most relevant healthcare issues in Europe. The number of overweight people rises due to lifestyle changes, increased sitting activities, and less physical activity. Prevention in early childhood is paramount to stop this alarming trend.

Aim

This study primarily aimed to evaluate the average time children (3-5 years) from rural and urban Austrian regions spent engaging in physical activity and sedentary behaviors in their free-time. Additionally, we investigated the potential correlation between duration and habits of free-time activity or place of residence and age- and sex-specific body mass index (BMI). The potential impact of socio-economic factors on BMI was examined.

Methods

Urban (Vienna) and rural (Carinthia) regions of Austria were chosen for this observational cross-sectional study. Preschool children (n=130) attending nurseries in these regions were included. Weight and height were measured and BMI calculated. Free-time activity and socio-economic data were asked using a self-administered questionnaire. Data on sedentary behavior time (sedentary activity and media consumption) and physical activity time (defined as organized or spontaneous exercise) were analyzed using non-parametric tests.

Results

Preschool children spent approximately as many hours of their free-time engaged in physical activity as in sedentary behaviors. Time trend in media consumption amounts to one-third of the cumulative time spent engaging in sedentary behaviors. Preschoolers from the urban area spent fewer hours practicing organized exercise and more in sedentary behaviors than peers in the rural area. In the selected areas, 7 % of preschoolers were overweight, 3.9 % were obese. BMI was not associated with free-time activities but showed a trendwise negative correlation with organized exercise. A positive correlation of age and organized exercise was observed but not with physical activity per se.

Conclusions

Our results confirm the necessity of preventive interventions among Austrian preschoolers and lead to a better understanding of their free-time activities. Further investigations with larger study populations are needed to promote effective childhood obesity prevention and examine the differences regarding obesity prevalence and leisure-time activity between rural and urban areas.
Appendix
Available only for authorised users
Literature
2.
go back to reference Kiefer I, Rieder A, Rathmanner T, Meidlinger B, Baritsch C, Lawrence K, et al. Erster Österreichischer Adipositasbericht 2006. Grundlagen für zukünftige Handlungsfelder: Kinder, Jugendliche, Erwachsene. Verein Altern mit Zukunft, Herausgeber; 2016. Kiefer I, Rieder A, Rathmanner T, Meidlinger B, Baritsch C, Lawrence K, et al. Erster Österreichischer Adipositasbericht 2006. Grundlagen für zukünftige Handlungsfelder: Kinder, Jugendliche, Erwachsene. Verein Altern mit Zukunft, Herausgeber; 2016.
4.
go back to reference Kromeyer-Hauschild K, Wabitsch M, Kunze D. Perzentile für den Body-mass-Index für das Kindes-und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd. 2001;149:807–18.CrossRef Kromeyer-Hauschild K, Wabitsch M, Kunze D. Perzentile für den Body-mass-Index für das Kindes-und Jugendalter unter Heranziehung verschiedener deutscher Stichproben. Monatsschr Kinderheilkd. 2001;149:807–18.CrossRef
5.
go back to reference Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 320:1240–3. Cole TJ, Bellizzi MC, Flegal KM, Dietz WH. Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ. 320:1240–3.
7.
go back to reference Wabitsch M, Kunze D (federführend für die AGA). Konsensbasierte (S2) Leitlinie zur Diagnostik, Therapie und Prävention von Übergewicht und Adipositas im Kindes- und Jugendalter. 2015. www.a-g-a.de. Accessed 31 Aug 2020. Wabitsch M, Kunze D (federführend für die AGA). Konsensbasierte (S2) Leitlinie zur Diagnostik, Therapie und Prävention von Übergewicht und Adipositas im Kindes- und Jugendalter. 2015. www.​a-g-a.​de. Accessed 31 Aug 2020.
9.
go back to reference Liao X-P, Yu Y, Marc I, Dubois L, Abdelouahab N, Bouchard L, et al. Prenatal determinants of childhood obesity: a review of risk factors. Can J Physiol Pharmacol. 2019;97:147–54.PubMedCrossRef Liao X-P, Yu Y, Marc I, Dubois L, Abdelouahab N, Bouchard L, et al. Prenatal determinants of childhood obesity: a review of risk factors. Can J Physiol Pharmacol. 2019;97:147–54.PubMedCrossRef
10.
go back to reference Page KA, Luo S, Wang X, Chow T, Alves J, Buchanan TA, et al. Children Exposed to Maternal Obesity or Gestational Diabetes Mellitus During Early Fetal Development Have Hypothalamic Alterations That Predict Future Weight Gain. Dia Care. 2019;42:1473–80.CrossRef Page KA, Luo S, Wang X, Chow T, Alves J, Buchanan TA, et al. Children Exposed to Maternal Obesity or Gestational Diabetes Mellitus During Early Fetal Development Have Hypothalamic Alterations That Predict Future Weight Gain. Dia Care. 2019;42:1473–80.CrossRef
11.
go back to reference Mueller NT, Whyatt R, Hoepner L, Oberfield S, Dominguez-Bello MG, Widen EM, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes. 2015;39:665–70.CrossRef Mueller NT, Whyatt R, Hoepner L, Oberfield S, Dominguez-Bello MG, Widen EM, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes. 2015;39:665–70.CrossRef
12.
go back to reference Morgen CS, Ängquist L, Baker JL, Andersen AMN, Michaelsen KF, Sørensen TIA. Prenatal risk factors influencing childhood BMI and overweight independent of birth weight and infancy BMI: a path analysis within the Danish National Birth Cohort. Int J Obes. 2018;42:594–602.CrossRef Morgen CS, Ängquist L, Baker JL, Andersen AMN, Michaelsen KF, Sørensen TIA. Prenatal risk factors influencing childhood BMI and overweight independent of birth weight and infancy BMI: a path analysis within the Danish National Birth Cohort. Int J Obes. 2018;42:594–602.CrossRef
14.
go back to reference Kelsey MM, Zaepfel A, Bjornstad P, Nadeau KJ. Age-Related Consequences of Childhood Obesity. Gerontology. 2014;60:222–8.PubMedCrossRef Kelsey MM, Zaepfel A, Bjornstad P, Nadeau KJ. Age-Related Consequences of Childhood Obesity. Gerontology. 2014;60:222–8.PubMedCrossRef
15.
16.
go back to reference Cramer P, Steinwert T. Thin is good, fat is bad: How early does it begin? J Appl Dev Psychol. 1998;19:429–51.CrossRef Cramer P, Steinwert T. Thin is good, fat is bad: How early does it begin? J Appl Dev Psychol. 1998;19:429–51.CrossRef
17.
go back to reference Harriger JA, Thompson JK. Psychological consequences of obesity: Weight bias and body image in overweight and obese youth. Int Review Psychiatry. 2012;24:247–53.CrossRef Harriger JA, Thompson JK. Psychological consequences of obesity: Weight bias and body image in overweight and obese youth. Int Review Psychiatry. 2012;24:247–53.CrossRef
18.
go back to reference Singh AS, Mulder C, Twisk JWR, Van Mechelen W, Chinapaw MJM. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9:474–88.PubMedCrossRef Singh AS, Mulder C, Twisk JWR, Van Mechelen W, Chinapaw MJM. Tracking of childhood overweight into adulthood: a systematic review of the literature. Obes Rev. 2008;9:474–88.PubMedCrossRef
19.
go back to reference Döring N, Mayer S, Rasmussen F, Sonntag D. Economic Evaluation of Obesity Prevention in Early Childhood: Methods, Limitations and Recommendations. IJERPH. 2016;13:911.PubMedCentralCrossRef Döring N, Mayer S, Rasmussen F, Sonntag D. Economic Evaluation of Obesity Prevention in Early Childhood: Methods, Limitations and Recommendations. IJERPH. 2016;13:911.PubMedCentralCrossRef
20.
go back to reference Gao Z, Chen S, Huang CC, Stodden DF, Xiang P. Investigating elementary school children’s daily physical activity and sedentary behaviours during weekdays. J Sports Sci. 2017;35:99–104.PubMedCrossRef Gao Z, Chen S, Huang CC, Stodden DF, Xiang P. Investigating elementary school children’s daily physical activity and sedentary behaviours during weekdays. J Sports Sci. 2017;35:99–104.PubMedCrossRef
21.
go back to reference Arundell L, Hinkley T, Veitch J, Salmon J. Contribution of the After-School Period to Children’s Daily Participation in Physical Activity and Sedentary Behaviours. PLoS ONE. 2015;10:e0140132.PubMedPubMedCentralCrossRef Arundell L, Hinkley T, Veitch J, Salmon J. Contribution of the After-School Period to Children’s Daily Participation in Physical Activity and Sedentary Behaviours. PLoS ONE. 2015;10:e0140132.PubMedPubMedCentralCrossRef
22.
go back to reference Herman KM, Craig CL, Gauvin L, Katzmarzyk PT. Tracking of obesity and physical activity from childhood to adulthood: The Physical Activity Longitudinal Study. International Journal of Pediatric Obesity. 2009;4:281–8.PubMedCrossRef Herman KM, Craig CL, Gauvin L, Katzmarzyk PT. Tracking of obesity and physical activity from childhood to adulthood: The Physical Activity Longitudinal Study. International Journal of Pediatric Obesity. 2009;4:281–8.PubMedCrossRef
23.
go back to reference Dhar P, Robinson C. Physical activity and childhood obesity. Appl Econ Lett. 2016;23:584–7.CrossRef Dhar P, Robinson C. Physical activity and childhood obesity. Appl Econ Lett. 2016;23:584–7.CrossRef
24.
go back to reference Biddle SJ, Gorely T, Stensel DJ. Health-enhancing physical activity and sedentary behaviour in children and adolescents. J Sports Sci. 2004;22:679–701.PubMedCrossRef Biddle SJ, Gorely T, Stensel DJ. Health-enhancing physical activity and sedentary behaviour in children and adolescents. J Sports Sci. 2004;22:679–701.PubMedCrossRef
25.
go back to reference Prentice-Dunn H, Prentice-Dunn S. Physical activity, sedentary behavior, and childhood obesity: A review of cross-sectional studies. Psychology Health Medicine. 2012;17:255–73.CrossRef Prentice-Dunn H, Prentice-Dunn S. Physical activity, sedentary behavior, and childhood obesity: A review of cross-sectional studies. Psychology Health Medicine. 2012;17:255–73.CrossRef
26.
go back to reference Hu FB. Television Watching and Other Sedentary Behaviors in Relation to Risk of Obesity and Type 2 Diabetes Mellitus in Women. JAMA. 2003;289:1785.PubMedCrossRef Hu FB. Television Watching and Other Sedentary Behaviors in Relation to Risk of Obesity and Type 2 Diabetes Mellitus in Women. JAMA. 2003;289:1785.PubMedCrossRef
27.
go back to reference Tandon PS, Zhou C, Sallis JF, Cain KL, Frank LD, Saelens BE. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int J Behav Nutr Phys Act. 2012;9:88.PubMedPubMedCentralCrossRef Tandon PS, Zhou C, Sallis JF, Cain KL, Frank LD, Saelens BE. Home environment relationships with children’s physical activity, sedentary time, and screen time by socioeconomic status. Int J Behav Nutr Phys Act. 2012;9:88.PubMedPubMedCentralCrossRef
28.
go back to reference Wilkie HJ, Standage M, Gillison FB, Cumming SP, Katzmarzyk PT. The home electronic media environment and parental safety concerns: relationships with outdoor time after school and over the weekend among 9–11 year old children. BMC Public Health. 2018;18:456.PubMedPubMedCentralCrossRef Wilkie HJ, Standage M, Gillison FB, Cumming SP, Katzmarzyk PT. The home electronic media environment and parental safety concerns: relationships with outdoor time after school and over the weekend among 9–11 year old children. BMC Public Health. 2018;18:456.PubMedPubMedCentralCrossRef
29.
go back to reference Pearson N, Braithwaite RE, Biddle SJH, van Sluijs EMF, Atkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis: Active and sedentary behaviours in youth. Obes Rev. 2014;15:666–75.PubMedPubMedCentralCrossRef Pearson N, Braithwaite RE, Biddle SJH, van Sluijs EMF, Atkin AJ. Associations between sedentary behaviour and physical activity in children and adolescents: a meta-analysis: Active and sedentary behaviours in youth. Obes Rev. 2014;15:666–75.PubMedPubMedCentralCrossRef
30.
go back to reference Biddle SJ, Gorely T, Marshall SJ, Murdey I, Cameron N. Physical activity and sedentary behaviours in youth: issues and controversies. J Royal Soc Promotion Health. 2004;124:29–33.CrossRef Biddle SJ, Gorely T, Marshall SJ, Murdey I, Cameron N. Physical activity and sedentary behaviours in youth: issues and controversies. J Royal Soc Promotion Health. 2004;124:29–33.CrossRef
31.
go back to reference Zhang Y-X, Wang Z-X, Zhao J-S, Chu Z-H. Prevalence of Overweight and Obesity among Children and Adolescents in Shandong, China: Urban–Rural Disparity. J Trop Pediatr. 2016;62:293–300.PubMedCrossRef Zhang Y-X, Wang Z-X, Zhao J-S, Chu Z-H. Prevalence of Overweight and Obesity among Children and Adolescents in Shandong, China: Urban–Rural Disparity. J Trop Pediatr. 2016;62:293–300.PubMedCrossRef
32.
go back to reference Trivedi T, Liu J, Probst J, Merchant A, Jhones S, Martin AB. Obesity and obesity-related behaviors among rural and urban adults in the USA. Rural Remote Health. 2015;14:3267. Trivedi T, Liu J, Probst J, Merchant A, Jhones S, Martin AB. Obesity and obesity-related behaviors among rural and urban adults in the USA. Rural Remote Health. 2015;14:3267.
33.
go back to reference McCormack LA, Meendering J. Diet and Physical Activity in Rural vs Urban Children and Adolescents in the United States: A Narrative Review. Journal of the Academy of Nutrition Dietetics. 2016;116:467–80.PubMedCrossRef McCormack LA, Meendering J. Diet and Physical Activity in Rural vs Urban Children and Adolescents in the United States: A Narrative Review. Journal of the Academy of Nutrition Dietetics. 2016;116:467–80.PubMedCrossRef
34.
go back to reference Euler R, Jimenez EY, Sanders S, Kuhlemeier A, Van Horn ML, Cohen D, et al. Rural–Urban Differences in Baseline Dietary Intake and Physical Activity Levels of Adolescents. Prev Chronic Dis. 2019;16:180200.CrossRef Euler R, Jimenez EY, Sanders S, Kuhlemeier A, Van Horn ML, Cohen D, et al. Rural–Urban Differences in Baseline Dietary Intake and Physical Activity Levels of Adolescents. Prev Chronic Dis. 2019;16:180200.CrossRef
35.
go back to reference Johnson JA, Johnson AM. Urban-Rural Differences in Childhood and Adolescent Obesity in the United States: A Systematic Review and Meta-Analysis. Childhood Obesity. 2015;11:233–41.PubMedCrossRef Johnson JA, Johnson AM. Urban-Rural Differences in Childhood and Adolescent Obesity in the United States: A Systematic Review and Meta-Analysis. Childhood Obesity. 2015;11:233–41.PubMedCrossRef
36.
go back to reference Cohen SA, Cook SK, Kelley L, Foutz JD, Sando TA. A Closer Look at Rural-Urban Health Disparities: Associations Between Obesity and Rurality Vary by Geospatial and Sociodemographic Factors: Rural-Urban Disparities: Moderation by Place & SES. J Rural Health. 2017;33:167–79.PubMedCrossRef Cohen SA, Cook SK, Kelley L, Foutz JD, Sando TA. A Closer Look at Rural-Urban Health Disparities: Associations Between Obesity and Rurality Vary by Geospatial and Sociodemographic Factors: Rural-Urban Disparities: Moderation by Place & SES. J Rural Health. 2017;33:167–79.PubMedCrossRef
40.
go back to reference Lynch E, Liu K, Spring B, Hankinson A, Wei GS, Greenland P. Association of Ethnicity and Socioeconomic Status with Judgments of Body Size: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol. 2007;165:1055–62.PubMedCrossRef Lynch E, Liu K, Spring B, Hankinson A, Wei GS, Greenland P. Association of Ethnicity and Socioeconomic Status with Judgments of Body Size: The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol. 2007;165:1055–62.PubMedCrossRef
41.
go back to reference Krieger N, Williams DR, Moss NE. Measuring Social Class in US Public Health Research: Concepts, Methodologies, and Guidelines. Annu Rev Public Health. 1997;18:341–78.PubMedCrossRef Krieger N, Williams DR, Moss NE. Measuring Social Class in US Public Health Research: Concepts, Methodologies, and Guidelines. Annu Rev Public Health. 1997;18:341–78.PubMedCrossRef
42.
43.
go back to reference Strand BH, Kunst A. Childhood Socioeconomic Position and Cause-specific Mortality in Early Adulthood. Am J Epidemiol. 2006;165:85–93.PubMedCrossRef Strand BH, Kunst A. Childhood Socioeconomic Position and Cause-specific Mortality in Early Adulthood. Am J Epidemiol. 2006;165:85–93.PubMedCrossRef
45.
go back to reference Elm E, Altmann DG, Egger M, Pocock SC, Gøtzsche PC, et al. Das Strengthening the Reporting of Observational Studies in Epidemiology (STROBE-) Statement: Leitlinien für das Berichten von Beobachtungsstudien. Internist. 2008;49:688–93.CrossRef Elm E, Altmann DG, Egger M, Pocock SC, Gøtzsche PC, et al. Das Strengthening the Reporting of Observational Studies in Epidemiology (STROBE-) Statement: Leitlinien für das Berichten von Beobachtungsstudien. Internist. 2008;49:688–93.CrossRef
46.
go back to reference Gupta N, Goel K, Shah P, Misra A. Childhood Obesity in Developing Countries: Epidemiology, Determinants, and Prevention. Endocr Rev. 2012;33:48–70.PubMedCrossRef Gupta N, Goel K, Shah P, Misra A. Childhood Obesity in Developing Countries: Epidemiology, Determinants, and Prevention. Endocr Rev. 2012;33:48–70.PubMedCrossRef
48.
go back to reference Mayer M, Gleiss A, Häusler G, Borkenstein M, Kapelari K, Köstl G, et al. Weight and body mass index (BMI): current data for Austrian boys and girls aged 4 to under 19 years. Ann Hum Biol. 2015;42:45–55.PubMedCrossRef Mayer M, Gleiss A, Häusler G, Borkenstein M, Kapelari K, Köstl G, et al. Weight and body mass index (BMI): current data for Austrian boys and girls aged 4 to under 19 years. Ann Hum Biol. 2015;42:45–55.PubMedCrossRef
50.
go back to reference Greier K, Riechelmann H, Burtscher M. Prevalence of obesity and motor performance capabilities in Tyrolean preschool children. Wien Klin Wochenschr. 2014;126:409–15.PubMedCrossRef Greier K, Riechelmann H, Burtscher M. Prevalence of obesity and motor performance capabilities in Tyrolean preschool children. Wien Klin Wochenschr. 2014;126:409–15.PubMedCrossRef
52.
go back to reference Tomaz SA, Prioreschi A, Watson ED, McVeigh JA, Rae DE, Jones RA, et al. Body Mass Index, Physical Activity, Sedentary Behavior, Sleep, and Gross Motor Skill Proficiency in Preschool Children From a Low- to Middle-Income Urban Setting. J Phys Act Health. 2019;16(7):525–32.PubMedCrossRef Tomaz SA, Prioreschi A, Watson ED, McVeigh JA, Rae DE, Jones RA, et al. Body Mass Index, Physical Activity, Sedentary Behavior, Sleep, and Gross Motor Skill Proficiency in Preschool Children From a Low- to Middle-Income Urban Setting. J Phys Act Health. 2019;16(7):525–32.PubMedCrossRef
53.
go back to reference Vale SM, Santos RM, da C Soares-Miranda, Moreira LM, Ruiz CM, Mota JR. JA. Objectively measured physical activity and body mass index in preschool children. Int J Pediatr. 2010;2010:479439.PubMedPubMedCentralCrossRef Vale SM, Santos RM, da C Soares-Miranda, Moreira LM, Ruiz CM, Mota JR. JA. Objectively measured physical activity and body mass index in preschool children. Int J Pediatr. 2010;2010:479439.PubMedPubMedCentralCrossRef
54.
go back to reference Graf C, Koch B, Dordel S, Schindler-Marlow S, Icks A, Schüller A, et al. Physical activity, leisure habits and obesity in first-grade children. European Journal of Cardiovascular Prevention Rehabilitation. 2004;11:284–90.PubMedCrossRef Graf C, Koch B, Dordel S, Schindler-Marlow S, Icks A, Schüller A, et al. Physical activity, leisure habits and obesity in first-grade children. European Journal of Cardiovascular Prevention Rehabilitation. 2004;11:284–90.PubMedCrossRef
56.
go back to reference Tucker P. The physical activity levels of preschool-aged children: A systematic review. Early Childhood Research Quarterly. 2008;23:547–58.CrossRef Tucker P. The physical activity levels of preschool-aged children: A systematic review. Early Childhood Research Quarterly. 2008;23:547–58.CrossRef
57.
go back to reference Stalsberg R, Pedersen AV. Effects of socioeconomic status on the physical activity in adolescents: a systematic review of the evidence: Effects of socioeconomic status on the physical activity in adolescents. Scandinavian Journal of Medicine Science in Sports. 2010;20:368–83.PubMedCrossRef Stalsberg R, Pedersen AV. Effects of socioeconomic status on the physical activity in adolescents: a systematic review of the evidence: Effects of socioeconomic status on the physical activity in adolescents. Scandinavian Journal of Medicine Science in Sports. 2010;20:368–83.PubMedCrossRef
58.
go back to reference Elhakeem A, Cooper R, Bann D, Hardy R. Childhood socioeconomic position and adult leisure-time physical activity: a systematic review. Int J Behav Nutr Phys Act. 2015;12:92.PubMedPubMedCentralCrossRef Elhakeem A, Cooper R, Bann D, Hardy R. Childhood socioeconomic position and adult leisure-time physical activity: a systematic review. Int J Behav Nutr Phys Act. 2015;12:92.PubMedPubMedCentralCrossRef
Metadata
Title
A cross-sectional, exploratory survey on health-relevant free-time activities and body mass index in preschool children in urban and rural settings of Austria
Authors
J. Robatsch
P. Voitl
Susanne C. Diesner-Treiber
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02972-x

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue